These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 29113079)
1. Synthesis of Ferrofluids Made of Iron Oxide Nanoflowers: Interplay between Carrier Fluid and Magnetic Properties. Spizzo F; Sgarbossa P; Sieni E; Semenzato A; Dughiero F; Forzan M; Bertani R; Del Bianco L Nanomaterials (Basel); 2017 Nov; 7(11):. PubMed ID: 29113079 [TBL] [Abstract][Full Text] [Related]
2. Enhanced bio-compatibility of ferrofluids of self-assembled superparamagnetic iron oxide-silica core-shell nanoparticles. Narayanan TN; Mary AP; Swalih PK; Kumar DS; Makarov D; Albrecht M; Puthumana J; Anas A; Anantharaman MR J Nanosci Nanotechnol; 2011 Mar; 11(3):1958-67. PubMed ID: 21449334 [TBL] [Abstract][Full Text] [Related]
3. Biocompatible Magnetic Fluids of Co-Doped Iron Oxide Nanoparticles with Tunable Magnetic Properties. Dutz S; Buske N; Landers J; Gräfe C; Wende H; Clement JH Nanomaterials (Basel); 2020 May; 10(6):. PubMed ID: 32471031 [TBL] [Abstract][Full Text] [Related]
4. Immobilization of magnetic iron oxide nanoparticles on laponite discs - an easy way to biocompatible ferrofluids and ferrogels. Tzitzios V; Basina G; Bakandritsos A; Hadjipanayis CG; Mao H; Niarchos D; Hadjipanayis GC; Tucek J; Zboril R J Mater Chem; 2010 Jan; 20(26):5418-5428. PubMed ID: 20582149 [TBL] [Abstract][Full Text] [Related]
5. No aging phenomena in ferrofluids: the influence of coating on interparticle interactions of maghemite nanoparticles. Rabias I; Fardis M; Devlin E; Boukos N; Tsitrouli D; Papavassiliou G ACS Nano; 2008 May; 2(5):977-83. PubMed ID: 19206495 [TBL] [Abstract][Full Text] [Related]
7. In-Field Orientation and Dynamics of Ferrofluids Studied by Mössbauer Spectroscopy. Landers J; Salamon S; Remmer H; Ludwig F; Wende H ACS Appl Mater Interfaces; 2019 Jan; 11(3):3160-3168. PubMed ID: 30582794 [TBL] [Abstract][Full Text] [Related]
8. Evolution of the magnetic structure with chemical composition in spinel iron oxide nanoparticles. Muscas G; Yaacoub N; Concas G; Sayed F; Sayed Hassan R; Greneche JM; Cannas C; Musinu A; Foglietti V; Casciardi S; Sangregorio C; Peddis D Nanoscale; 2015 Aug; 7(32):13576-85. PubMed ID: 26203789 [TBL] [Abstract][Full Text] [Related]
9. SPIONs Prepared in Air through Improved Synthesis Methodology: The Influence of γ-Fe Matos JC; Gonçalves MC; Pereira LCJ; Vieira BJC; Waerenborgh JC Nanomaterials (Basel); 2019 Jun; 9(7):. PubMed ID: 31261832 [TBL] [Abstract][Full Text] [Related]
10. Advanced biomedical applications of iron oxide nanostructures based ferrofluids. Imran M; Affandi AM; Alam MM; Khan A; Khan AI Nanotechnology; 2021 Jul; 32(42):. PubMed ID: 34252891 [TBL] [Abstract][Full Text] [Related]
11. Approaches on Ferrofluid Synthesis and Applications: Current Status and Future Perspectives. Oehlsen O; Cervantes-Ramírez SI; Cervantes-Avilés P; Medina-Velo IA ACS Omega; 2022 Feb; 7(4):3134-3150. PubMed ID: 35128226 [TBL] [Abstract][Full Text] [Related]
12. Magnetic properties of biofunctionalized iron oxide nanoparticles as magnetic resonance imaging contrast agents. Gervits NE; Gippius AA; Tkachev AV; Demikhov EI; Starchikov SS; Lyubutin IS; Vasiliev AL; Chekhonin VP; Abakumov MA; Semkina AS; Mazhuga AG Beilstein J Nanotechnol; 2019; 10():1964-1972. PubMed ID: 31667044 [No Abstract] [Full Text] [Related]
13. Hierarchical Structure and Magnetic Behavior of Zn-Doped Magnetite Aqueous Ferrofluids Prepared from Natural Sand for Antibacterial Agents. Taufiq A; Yuliantika D; Sunaryono S; Saputro RE; Hidayat N; Mufti N; Susanto H; Soontaranon S; Nur H An Acad Bras Cienc; 2021; 93(4):e20200774. PubMed ID: 34705939 [TBL] [Abstract][Full Text] [Related]
14. Dynamics of Superparamagnetic Iron Oxide Nanoparticles with Various Polymeric Coatings. Strączek T; Fiejdasz S; Rybicki D; Goc K; Przewoźnik J; Mazur W; Nowakowska M; Zapotoczny S; Rumian S; Kapusta C Materials (Basel); 2019 Jun; 12(11):. PubMed ID: 31163583 [TBL] [Abstract][Full Text] [Related]
15. Synthesis of Bio-Compatible SPION-based Aqueous Ferrofluids and Evaluation of RadioFrequency Power Loss for Magnetic Hyperthermia. Reena Mary AP; Narayanan TN; Sunny V; Sakthikumar D; Yoshida Y; Joy PA; Anantharaman MR Nanoscale Res Lett; 2010 Aug; 5(10):1706-11. PubMed ID: 21076702 [TBL] [Abstract][Full Text] [Related]
16. Structural, static and dynamic magnetic properties of dextran coated γ-Fe(2)O(3) nanoparticles studied by (57)Fe NMR, Mössbauer, TEM and magnetization measurements. Fardis M; Douvalis AP; Tsitrouli D; Rabias I; Stamopoulos D; Kehagias T; Karakosta E; Diamantopoulos G; Bakas T; Papavassiliou G J Phys Condens Matter; 2012 Apr; 24(15):156001. PubMed ID: 22418594 [TBL] [Abstract][Full Text] [Related]
17. Preparation of monodisperse magnetic polymer microspheres by swelling and thermolysis technique. Yang C; Shao Q; He J; Jiang B Langmuir; 2010 Apr; 26(7):5179-83. PubMed ID: 19908847 [TBL] [Abstract][Full Text] [Related]
18. Structure, synthetic methods, magnetic properties and biomedical applications of ferrofluids. Shokrollahi H Mater Sci Eng C Mater Biol Appl; 2013 Jul; 33(5):2476-87. PubMed ID: 23623058 [TBL] [Abstract][Full Text] [Related]
19. High impact of in situ dextran coating on biocompatibility, stability and magnetic properties of iron oxide nanoparticles. Shaterabadi Z; Nabiyouni G; Soleymani M Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():947-956. PubMed ID: 28415550 [TBL] [Abstract][Full Text] [Related]
20. Study of Iron oxide nanoparticles using Mössbauer spectroscopy with a high velocity resolution. Oshtrakh MI; Ushakov MV; Šepelák V; Semionkin VA; Morais PC Spectrochim Acta A Mol Biomol Spectrosc; 2016 Jan; 152():666-79. PubMed ID: 26105556 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]