These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 29113122)

  • 1. Investigation of Interaction between Dislocation Loop and Coherent Twin Boundary in BCC Ta Film during Nanoindentation.
    Huang C; Peng X; Yang B; Zhao Y; Weng S; Fu T
    Nanomaterials (Basel); 2017 Nov; 7(11):. PubMed ID: 29113122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atomistic Study of Interactions between Intrinsic Kink Defects and Dislocations in Twin Boundaries of Nanotwinned Copper during Nanoindentation.
    Hu X; Ni Y; Zhang Z
    Nanomaterials (Basel); 2020 Jan; 10(2):. PubMed ID: 32012856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomistic Investigation of Anisotropic Nanoindentation Behavior of Nanotwinned Aluminum Containing Inclined Twin Boundaries.
    Liu Y; Duan Y; Zhang J
    Nanomaterials (Basel); 2018 Sep; 8(9):. PubMed ID: 30200607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics simulations for nanoindentation response of nanotwinned FeNiCrCoCu high entropy alloy.
    Tian Y; Fang Q; Li J
    Nanotechnology; 2020 Nov; 31(46):465701. PubMed ID: 32746442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deciphering the interactions between single arm dislocation sources and coherent twin boundary in nickel bi-crystal.
    Samaee V; Dupraz M; Pardoen T; Van Swygenhoven H; Schryvers D; Idrissi H
    Nat Commun; 2021 Feb; 12(1):962. PubMed ID: 33574246
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ nanoindentation study on plasticity and work hardening in aluminium with incoherent twin boundaries.
    Bufford D; Liu Y; Wang J; Wang H; Zhang X
    Nat Commun; 2014 Sep; 5():4864. PubMed ID: 25204688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plastic Deformation and Hardening Mechanisms of a Nano-twinned Cubic Boron Nitride Ceramic.
    Huang C; Yang B; Peng X; Chen S
    ACS Appl Mater Interfaces; 2020 Nov; 12(44):50161-50175. PubMed ID: 33094992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of interface atomic structure on the deformation mechanisms of Ti
    Liu P; Han X; Sun D; Wang Q
    J Phys Condens Matter; 2019 Mar; 31(12):125002. PubMed ID: 30625453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Size-dependent dislocation-twin interactions.
    Wang J; Cao G; Zhang Z; Sansoz F
    Nanoscale; 2019 Jul; 11(26):12672-12679. PubMed ID: 31237593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dislocation nucleation governed softening and maximum strength in nano-twinned metals.
    Li X; Wei Y; Lu L; Lu K; Gao H
    Nature; 2010 Apr; 464(7290):877-80. PubMed ID: 20376146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Twin Boundary Motion and Dislocation-Twin Interaction on Mechanical Behavior in Fcc Metals.
    Mianroodi JR; Svendsen B
    Materials (Basel); 2020 May; 13(10):. PubMed ID: 32414053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transformation of Coherent Twin Boundary into Basal-Prismatic Boundary in HCP-Ti: A Molecular Dynamics Study.
    Sun T; Bao Q; Gao Y; Li S; Li J; Wang H
    Materials (Basel); 2024 May; 17(9):. PubMed ID: 38730971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transition of dislocation nucleation induced by local stress concentration in nanotwinned copper.
    Lu N; Du K; Lu L; Ye HQ
    Nat Commun; 2015 Jul; 6():7648. PubMed ID: 26179409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dislocation-Governed Plastic Deformation and Fracture Toughness of Nanotwinned Magnesium.
    Zhou L; Guo YF
    Materials (Basel); 2015 Aug; 8(8):5250-5264. PubMed ID: 28793502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Observing Dislocations Transported by Twin Boundaries in Al Thin Film: Unusual Pathways for Dislocation-Twin Boundary Interactions.
    Kou Z; Feng T; Lan S; Tang S; Yang L; Yang Y; Wilde G
    Nano Lett; 2022 Aug; 22(15):6229-6234. PubMed ID: 35876496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atomistic simulations of mechanical response of a heterogeneous fcc/bcc nanolayered composite.
    Xu K; Zhai H; He L; Ni Y; Lu P; Wang G; Liu X
    J Phys Condens Matter; 2022 Jul; 34(38):. PubMed ID: 35839749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atomic-scale observation of nucleation- and growth-controlled deformation twinning in body-centered cubic nanocrystals.
    Zhong L; Zhang Y; Wang X; Zhu T; Mao SX
    Nat Commun; 2024 Jan; 15(1):560. PubMed ID: 38228646
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigating the dislocation reactions on Σ3{111} twin boundary during deformation twin nucleation process in an ultrafine-grained high-manganese steel.
    Hung CY; Shimokawa T; Bai Y; Tsuji N; Murayama M
    Sci Rep; 2021 Sep; 11(1):19298. PubMed ID: 34588568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ observation of deformation processes in nanocrystalline face-centered cubic metals.
    Kobler A; Brandl C; Hahn H; Kübel C
    Beilstein J Nanotechnol; 2016; 7():572-80. PubMed ID: 27335747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rebuilding the Strain Hardening at a Large Strain in Twinned Au Nanowires.
    Sun J; Han J; Yang Z; Liu H; Song D; Ma A; Fang L
    Nanomaterials (Basel); 2018 Oct; 8(10):. PubMed ID: 30340344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.