These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 29113794)

  • 1. A new rat-compatible robotic framework for spatial navigation behavioral experiments.
    Gianelli S; Harland B; Fellous JM
    J Neurosci Methods; 2018 Jan; 294():40-50. PubMed ID: 29113794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time sensory-motor integration of hippocampal place cell replay and prefrontal sequence learning in simulated and physical rat robots for novel path optimization.
    Cazin N; Scleidorovich P; Weitzenfeld A; Dominey PF
    Biol Cybern; 2020 Apr; 114(2):249-268. PubMed ID: 32095878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decoding movement trajectories through a T-maze using point process filters applied to place field data from rat hippocampal region CA1.
    Huang Y; Brandon MP; Griffin AL; Hasselmo ME; Eden UT
    Neural Comput; 2009 Dec; 21(12):3305-34. PubMed ID: 19764871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiplexing of Information about Self and Others in Hippocampal Ensembles.
    Bos JJ; Vinck M; Marchesi P; Keestra A; van Mourik-Donga LA; Jackson JC; Verschure PFMJ; Pennartz CMA
    Cell Rep; 2019 Dec; 29(12):3859-3871.e6. PubMed ID: 31851919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characteristics of CA1 place fields in a complex maze with multiple choice points.
    Tanila H; Ku S; Kloosterman F; Wilson MA
    Hippocampus; 2018 Feb; 28(2):81-96. PubMed ID: 29072798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engagement of neural circuits underlying 2D spatial navigation in a rodent virtual reality system.
    Aronov D; Tank DW
    Neuron; 2014 Oct; 84(2):442-56. PubMed ID: 25374363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Dedicated Population for Reward Coding in the Hippocampus.
    Gauthier JL; Tank DW
    Neuron; 2018 Jul; 99(1):179-193.e7. PubMed ID: 30008297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial representations in dorsal hippocampal neurons during a tactile-visual conditional discrimination task.
    Griffin AL; Owens CB; Peters GJ; Adelman PC; Cline KM
    Hippocampus; 2012 Feb; 22(2):299-308. PubMed ID: 21080411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonlocal spatiotemporal representation in the hippocampus of freely flying bats.
    Dotson NM; Yartsev MM
    Science; 2021 Jul; 373(6551):242-247. PubMed ID: 34244418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contributions of Hippocampus and Striatum to Memory-Guided Behavior Depend on Past Experience.
    Ferbinteanu J
    J Neurosci; 2016 Jun; 36(24):6459-70. PubMed ID: 27307234
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial coding and physiological properties of hippocampal neurons in the Cornu Ammonis subregions.
    Oliva A; Fernández-Ruiz A; Buzsáki G; Berényi A
    Hippocampus; 2016 Dec; 26(12):1593-1607. PubMed ID: 27650887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vision-Based Robot Navigation through Combining Unsupervised Learning and Hierarchical Reinforcement Learning.
    Zhou X; Bai T; Gao Y; Han Y
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30939807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A hierarchical model of goal directed navigation selects trajectories in a visual environment.
    Erdem UM; Milford MJ; Hasselmo ME
    Neurobiol Learn Mem; 2015 Jan; 117():109-21. PubMed ID: 25079451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A framework to identify structured behavioral patterns within rodent spatial trajectories.
    Donnarumma F; Prevete R; Maisto D; Fuscone S; Irvine EM; van der Meer MAA; Kemere C; Pezzulo G
    Sci Rep; 2021 Jan; 11(1):468. PubMed ID: 33432100
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hippocampal CA1 activity correlated with the distance to the goal and navigation performance.
    Spiers HJ; Olafsdottir HF; Lever C
    Hippocampus; 2018 Sep; 28(9):644-658. PubMed ID: 29149774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cognitive memory and mapping in a brain-like system for robotic navigation.
    Tang H; Huang W; Narayanamoorthy A; Yan R
    Neural Netw; 2017 Mar; 87():27-37. PubMed ID: 28064015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robotic and neuronal simulation of the hippocampus and rat navigation.
    Burgess N; Donnett JG; Jeffery KJ; O'Keefe J
    Philos Trans R Soc Lond B Biol Sci; 1997 Oct; 352(1360):1535-43. PubMed ID: 9368942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel rat robot controlled by electrical stimulation of the nigrostriatal pathway.
    Koh CS; Park HY; Shin J; Kong C; Park M; Seo IS; Koo B; Jung HH; Chang JW; Shin HC
    Neurosurg Focus; 2020 Jul; 49(1):E11. PubMed ID: 32610286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vectorial representation of spatial goals in the hippocampus of bats.
    Sarel A; Finkelstein A; Las L; Ulanovsky N
    Science; 2017 Jan; 355(6321):176-180. PubMed ID: 28082589
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.