BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 29113885)

  • 1. Improvement thermostability of Pseudoalteromonas carrageenovora arylsulfatase by rational design.
    Zhu Y; Qiao C; Li H; Li L; Xiao A; Ni H; Jiang Z
    Int J Biol Macromol; 2018 Mar; 108():953-959. PubMed ID: 29113885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of an arylsulfatase from a mutant library of Pseudoalteromonas carrageenovora arylsulfatase.
    Zhu Y; Liu H; Qiao C; Li L; Jiang Z; Xiao A; Ni H
    Int J Biol Macromol; 2017 Mar; 96():370-376. PubMed ID: 27940339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A mutant of Pseudoalteromonas carrageenovora arylsulfatase with enhanced enzyme activity and its potential application in improvement of the agar quality.
    Zhu Y; Liang M; Li H; Ni H; Li L; Li Q; Jiang Z
    Food Chem; 2020 Aug; 320():126652. PubMed ID: 32229399
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purification and characterization of the recombinant arylsulfatase cloned from Pseudoalteromonas carrageenovora.
    Kim DE; Kim KH; Bae YJ; Lee JH; Jang YH; Nam SW
    Protein Expr Purif; 2005 Jan; 39(1):107-15. PubMed ID: 15596366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving the thermostability of a GH97 dextran glucosidase by rational design.
    Zhang X; Chen F; He C; Fang W; Fang Z; Zhang X; Wang X; Xiao Y
    Biotechnol Lett; 2020 Nov; 42(11):2211-2221. PubMed ID: 32488441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvement of thermostability by increasing rigidity in the finger regions and flexibility in the catalytic pocket area of Pseudoalteromonas porphyrae κ-carrageenase.
    Du Z; Huang X; Li H; Zheng M; Hong T; Li Z; Du X; Jiang Z; Ni H; Li Q; Zhu Y
    World J Microbiol Biotechnol; 2024 May; 40(7):216. PubMed ID: 38802708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein engineering of Bacillus acidopullulyticus pullulanase for enhanced thermostability using in silico data driven rational design methods.
    Chen A; Li Y; Nie J; McNeil B; Jeffrey L; Yang Y; Bai Z
    Enzyme Microb Technol; 2015 Oct; 78():74-83. PubMed ID: 26215347
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-based engineering of alkaline α-amylase from alkaliphilic Alkalimonas amylolytica for improved thermostability.
    Deng Z; Yang H; Li J; Shin HD; Du G; Liu L; Chen J
    Appl Microbiol Biotechnol; 2014 May; 98(9):3997-4007. PubMed ID: 24247992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of the thermostability of Streptomyces kathirae SC-1 tyrosinase by rational design and empirical mutation.
    Guo J; Rao Z; Yang T; Man Z; Xu M; Zhang X; Yang ST
    Enzyme Microb Technol; 2015 Sep; 77():54-60. PubMed ID: 26138400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improvement in Thermostability of an Achaetomium sp. Strain Xz8 Endopolygalacturonase via the Optimization of Charge-Charge Interactions.
    Tu T; Luo H; Meng K; Cheng Y; Ma R; Shi P; Huang H; Bai Y; Wang Y; Zhang L; Yao B
    Appl Environ Microbiol; 2015 Oct; 81(19):6938-44. PubMed ID: 26209675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rational design of K173A substitution enhances thermostability coupled with catalytic activity of Enterobacter sp. Bn12 lipase.
    Farrokh P; Yakhchali B; Karkhane AA
    J Mol Microbiol Biotechnol; 2014; 24(4):262-9. PubMed ID: 25277599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rational design and structure-based engineering of alkaline pectate lyase from Paenibacillus sp. 0602 to improve thermostability.
    Zhou Z; Wang X
    BMC Biotechnol; 2021 May; 21(1):32. PubMed ID: 33941157
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving the thermostability by introduction of arginines on the surface of α-L-rhamnosidase (r-Rha1) from Aspergillus niger.
    Li L; Liao H; Yang Y; Gong J; Liu J; Jiang Z; Zhu Y; Xiao A; Ni H
    Int J Biol Macromol; 2018 Jun; 112():14-21. PubMed ID: 29355637
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering a thermostable fungal GH10 xylanase, importance of N-terminal amino acids.
    Song L; Tsang A; Sylvestre M
    Biotechnol Bioeng; 2015 Jun; 112(6):1081-91. PubMed ID: 25640404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering and introduction of de novo disulphide bridges in organophosphorus hydrolase enzyme for thermostability improvement.
    Farnoosh G; Khajeh K; Latifi AM; Aghamollaei H
    J Biosci; 2016 Dec; 41(4):577-588. PubMed ID: 27966481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous enhancement of barley β-amylase thermostability and catalytic activity by R115 and T387 residue sites mutation.
    Wang X; Niu C; Bao M; Li Y; Liu C; Yun Z; Li Q; Wang J
    Biochem Biophys Res Commun; 2019 Jun; 514(1):301-307. PubMed ID: 31030939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing the thermostability of fumarase C from Corynebacterium glutamicum via molecular modification.
    Lin L; Wang Y; Wu M; Zhu L; Yang L; Lin J
    Enzyme Microb Technol; 2018 Aug; 115():45-51. PubMed ID: 29859602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Improving the thermostability of α-amylase from Rhizopus oryzae by rational design].
    Yang Q; Tang B; Li S
    Sheng Wu Gong Cheng Xue Bao; 2018 Jul; 34(7):1117-1127. PubMed ID: 30058310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced thermostability of methyl parathion hydrolase from Ochrobactrum sp. M231 by rational engineering of a glycine to proline mutation.
    Tian J; Wang P; Gao S; Chu X; Wu N; Fan Y
    FEBS J; 2010 Dec; 277(23):4901-8. PubMed ID: 20977676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering Clostridium absonum 7α-hydroxysteroid Dehydrogenase for Enhancing Thermostability Based on Flexible Site and ΔΔG Prediction.
    Lou D; Tan J; Zhu L; Ji S; Tang S; Yao K; Han J; Wang B
    Protein Pept Lett; 2018; 25(3):230-235. PubMed ID: 29141528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.