These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 29113924)

  • 21. Species cohesion of an extremophyte (Carex angustisquama, Cyperaceae) in solfatara fields maintained under interspecific natural hybridization.
    Nagasawa K; Setoguchi H; Maki M; Sawa K; Horie K; Sakaguchi S
    Ann Bot; 2021 Aug; 128(3):343-356. PubMed ID: 34104952
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Monophyly, phylogenetic position and the role of hybridization in Schoenoxiphium Nees (Cariceae, Cyperaceae).
    Gehrke B; Martín-Bravo S; Muasya M; Luceño M
    Mol Phylogenet Evol; 2010 Jul; 56(1):380-92. PubMed ID: 20363346
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Assembly of the Arctic flora: Highly parallel and recurrent patterns in sedges (Carex).
    Hoffmann MH; Gebauer S; von Rozycki T
    Am J Bot; 2017 Sep; 104(9):1334-1343. PubMed ID: 29885234
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sedges of the family Cyperaceae are primarily in the genera Carex and Cyperus.
    Weber RW
    Ann Allergy Asthma Immunol; 2005 Nov; 95(5):A6. PubMed ID: 16312159
    [No Abstract]   [Full Text] [Related]  

  • 25. Nonuniform processes of chromosome evolution in sedges (Carex: Cyperaceae).
    Hipp AL
    Evolution; 2007 Sep; 61(9):2175-94. PubMed ID: 17767589
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evolution of genome size in Carex (Cyperaceae) in relation to chromosome number and genomic base composition.
    Lipnerová I; Bures P; Horová L; Smarda P
    Ann Bot; 2013 Jan; 111(1):79-94. PubMed ID: 23175591
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Discordance between phylogenetics and coalescent-based divergence modelling: exploring phylogeographic patterns of speciation in the Carex macrocephala species complex.
    King MG; Roalson EH
    Mol Ecol; 2009 Feb; 18(3):468-82. PubMed ID: 19161468
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Selection and inertia in the evolution of holocentric chromosomes in sedges (Carex, Cyperaceae).
    Escudero M; Hipp AL; Hansen TF; Voje KL; Luceño M
    New Phytol; 2012 Jul; 195(1):237-47. PubMed ID: 22489934
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The east-west-north colonization history of the Mediterranean and Europe by the coastal plant Carex extensa (Cyperaceae).
    Escudero M; Vargas P; Arens P; Ouborg NJ; Luceño M
    Mol Ecol; 2010 Jan; 19(2):352-70. PubMed ID: 20002603
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microhabitat differences impact phylogeographic concordance of codistributed species: genomic evidence in montane sedges (Carex L.) from the Rocky Mountains.
    Massatti R; Knowles LL
    Evolution; 2014 Oct; 68(10):2833-46. PubMed ID: 25041894
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phylogeny of world stag beetles (Coleoptera: Lucanidae) reveals a Gondwanan origin of Darwin's stag beetle.
    Kim SI; Farrell BD
    Mol Phylogenet Evol; 2015 May; 86():35-48. PubMed ID: 25732069
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Taxonomic delimitation and drivers of speciation in the Ibero-North African Carex sect. Phacocystis river-shore group (Cyperaceae).
    Jiménez-Mejías P; Escudero M; Guerra-Cárdenas S; Lye KA; Luceño M
    Am J Bot; 2011 Nov; 98(11):1855-67. PubMed ID: 22025295
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recognition of two major clades and early diverged groups within the subfamily Cyperoideae (Cyperaceae) including Korean sedges.
    Jung J; Choi HK
    J Plant Res; 2013 May; 126(3):335-49. PubMed ID: 23114970
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cryptic Species Due to Hybridization: A Combined Approach to Describe a New Species (Carex: Cyperaceae).
    Maguilla E; Escudero M
    PLoS One; 2016; 11(12):e0166949. PubMed ID: 27973589
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Integrating fossils, phylogenies, and niche models into biogeography to reveal ancient evolutionary history: the case of Hypericum (hypericaceae).
    Meseguer AS; Lobo JM; Ree R; Beerling DJ; Sanmartín I
    Syst Biol; 2015 Mar; 64(2):215-32. PubMed ID: 25398444
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An integrative monograph of
    Luceño M; Villaverde T; Márquez-Corro JI; Sánchez-Villegas R; Maguilla E; Escudero M; Jiménez-Mejías P; Sánchez-Villegas M; Miguez M; Benítez-Benítez C; Muasya AM; Martín-Bravo S
    PeerJ; 2021; 9():e11336. PubMed ID: 34046256
    [No Abstract]   [Full Text] [Related]  

  • 37. Phylogenetic relationships of the Cobitoidea (Teleostei: Cypriniformes) inferred from mitochondrial and nuclear genes with analyses of gene evolution.
    Liu SQ; Mayden RL; Zhang JB; Yu D; Tang QY; Deng X; Liu HZ
    Gene; 2012 Oct; 508(1):60-72. PubMed ID: 22868207
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A plastid DNA phylogeny of tribe Miliuseae: insights into relationships and character evolution in one of the most recalcitrant major clades of Annonaceae.
    Chaowasku T; Thomas DC; van der Ham RW; Smets EF; Mols JB; Chatrou LW
    Am J Bot; 2014 Apr; 101(4):691-709. PubMed ID: 24688057
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Allopatric speciation despite historical gene flow: Divergence and hybridization in Carex furva and C. lucennoiberica (Cyperaceae) inferred from plastid and nuclear RAD-seq data.
    Maguilla E; Escudero M; Hipp AL; Luceño M
    Mol Ecol; 2017 Oct; 26(20):5646-5662. PubMed ID: 28742230
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phylogeny and biogeography of Tynanthus Miers (Bignonieae, Bignoniaceae).
    M P de Medeiros MC; Lohmann LG
    Mol Phylogenet Evol; 2015 Apr; 85():32-40. PubMed ID: 25659336
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.