These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
252 related articles for article (PubMed ID: 29114020)
1. Identification of Novel Alleles Conferring Superior Production of Rose Flavor Phenylethyl Acetate Using Polygenic Analysis in Yeast. Trindade de Carvalho B; Holt S; Souffriau B; Lopes Brandão R; Foulquié-Moreno MR; Thevelein JM mBio; 2017 Nov; 8(6):. PubMed ID: 29114020 [TBL] [Abstract][Full Text] [Related]
2. Polygenic Analysis in Absence of Major Effector Holt S; Trindade de Carvalho B; Foulquié-Moreno MR; Thevelein JM mBio; 2018 Aug; 9(4):. PubMed ID: 30154260 [TBL] [Abstract][Full Text] [Related]
3. Polygenic Analysis of Tolerance to Carbon Dioxide Inhibition of Isoamyl Acetate "Banana" Flavor Production in Yeast Reveals Souffriau B; Holt S; Hagman A; De Graeve S; Malcorps P; Foulquié-Moreno MR; Thevelein JM Appl Environ Microbiol; 2022 Sep; 88(18):e0081422. PubMed ID: 36073947 [TBL] [Abstract][Full Text] [Related]
4. QTL analysis of high thermotolerance with superior and downgraded parental yeast strains reveals new minor QTLs and converges on novel causative alleles involved in RNA processing. Yang Y; Foulquié-Moreno MR; Clement L; Erdei E; Tanghe A; Schaerlaekens K; Dumortier F; Thevelein JM PLoS Genet; 2013; 9(8):e1003693. PubMed ID: 23966873 [TBL] [Abstract][Full Text] [Related]
5. Comparative polygenic analysis of maximal ethanol accumulation capacity and tolerance to high ethanol levels of cell proliferation in yeast. Pais TM; Foulquié-Moreno MR; Hubmann G; Duitama J; Swinnen S; Goovaerts A; Yang Y; Dumortier F; Thevelein JM PLoS Genet; 2013 Jun; 9(6):e1003548. PubMed ID: 23754966 [TBL] [Abstract][Full Text] [Related]
6. Identification of novel causative genes determining the complex trait of high ethanol tolerance in yeast using pooled-segregant whole-genome sequence analysis. Swinnen S; Schaerlaekens K; Pais T; Claesen J; Hubmann G; Yang Y; Demeke M; Foulquié-Moreno MR; Goovaerts A; Souvereyns K; Clement L; Dumortier F; Thevelein JM Genome Res; 2012 May; 22(5):975-84. PubMed ID: 22399573 [TBL] [Abstract][Full Text] [Related]
7. QTL mapping of volatile compound production in Saccharomyces cerevisiae during alcoholic fermentation. Eder M; Sanchez I; Brice C; Camarasa C; Legras JL; Dequin S BMC Genomics; 2018 Mar; 19(1):166. PubMed ID: 29490607 [TBL] [Abstract][Full Text] [Related]
8. Improved ethyl caproate production of Chinese liquor yeast by overexpressing fatty acid synthesis genes with OPI1 deletion. Chen Y; Luo W; Gong R; Xue X; Guan X; Song L; Guo X; Xiao D J Ind Microbiol Biotechnol; 2016 Sep; 43(9):1261-70. PubMed ID: 27344573 [TBL] [Abstract][Full Text] [Related]
9. Polygenic analysis and targeted improvement of the complex trait of high acetic acid tolerance in the yeast Saccharomyces cerevisiae. Meijnen JP; Randazzo P; Foulquié-Moreno MR; van den Brink J; Vandecruys P; Stojiljkovic M; Dumortier F; Zalar P; Boekhout T; Gunde-Cimerman N; Kokošar J; Štajdohar M; Curk T; Petrovič U; Thevelein JM Biotechnol Biofuels; 2016; 9():5. PubMed ID: 26740819 [TBL] [Abstract][Full Text] [Related]
11. Effect of increased yeast alcohol acetyltransferase activity on flavor profiles of wine and distillates. Lilly M; Lambrechts MG; Pretorius IS Appl Environ Microbiol; 2000 Feb; 66(2):744-53. PubMed ID: 10653746 [TBL] [Abstract][Full Text] [Related]
12. Novel wine yeast with ARO4 and TYR1 mutations that overproduce 'floral' aroma compounds 2-phenylethanol and 2-phenylethyl acetate. Cordente AG; Solomon M; Schulkin A; Leigh Francis I; Barker A; Borneman AR; Curtin CD Appl Microbiol Biotechnol; 2018 Jul; 102(14):5977-5988. PubMed ID: 29744630 [TBL] [Abstract][Full Text] [Related]
13. Metabolic Engineering of Escherichia coli for Production of 2-Phenylethanol and 2-Phenylethyl Acetate from Glucose. Guo D; Zhang L; Kong S; Liu Z; Li X; Pan H J Agric Food Chem; 2018 Jun; 66(23):5886-5891. PubMed ID: 29808680 [TBL] [Abstract][Full Text] [Related]
14. Identification of multiple interacting alleles conferring low glycerol and high ethanol yield in Saccharomyces cerevisiae ethanolic fermentation. Hubmann G; Mathé L; Foulquié-Moreno MR; Duitama J; Nevoigt E; Thevelein JM Biotechnol Biofuels; 2013 Jun; 6(1):87. PubMed ID: 23759206 [TBL] [Abstract][Full Text] [Related]
15. QTL analysis reveals genomic variants linked to high-temperature fermentation performance in the industrial yeast. Wang Z; Qi Q; Lin Y; Guo Y; Liu Y; Wang Q Biotechnol Biofuels; 2019; 12():59. PubMed ID: 30923567 [TBL] [Abstract][Full Text] [Related]
16. Self-cloning yeast strains containing novel FAS2 mutations produce a higher amount of ethyl caproate in Japanese sake. Aritomi K; Hirosawa I; Hoshida H; Shiigi M; Nishizawa Y; Kashiwagi S; Akada R Biosci Biotechnol Biochem; 2004 Jan; 68(1):206-14. PubMed ID: 14745185 [TBL] [Abstract][Full Text] [Related]
17. Effect of yeast assimilable nitrogen on the synthesis of phenolic aroma compounds by Hanseniaspora vineae strains. Martin V; Boido E; Giorello F; Mas A; Dellacassa E; Carrau F Yeast; 2016 Jul; 33(7):323-8. PubMed ID: 26945700 [TBL] [Abstract][Full Text] [Related]
18. Identification of novel genes involved in neutral lipid storage by quantitative trait loci analysis of Saccharomyces cerevisiae. Pačnik K; Ogrizović M; Diepold M; Eisenberg T; Žganjar M; Žun G; Kužnik B; Gostinčar C; Curk T; Petrovič U; Natter K BMC Genomics; 2021 Feb; 22(1):110. PubMed ID: 33563210 [TBL] [Abstract][Full Text] [Related]
19. Isolation and analysis of a sake yeast mutant with phenylalanine accumulation. Nishimura A; Isogai S; Murakami N; Hotta N; Kotaka A; Matsumura K; Hata Y; Ishida H; Takagi H J Ind Microbiol Biotechnol; 2022 May; 49(3):. PubMed ID: 34788829 [TBL] [Abstract][Full Text] [Related]
20. Polygenic analysis of very high acetic acid tolerance in the yeast Stojiljkovic M; Foulquié-Moreno MR; Thevelein JM Biotechnol Biofuels; 2020; 13():126. PubMed ID: 32695222 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]