BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

583 related articles for article (PubMed ID: 29114025)

  • 21. Opportunity nox: the future of NADPH oxidases as therapeutic targets in cardiovascular disease.
    Streeter J; Thiel W; Brieger K; Miller FJ
    Cardiovasc Ther; 2013 Jun; 31(3):125-37. PubMed ID: 22280098
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A thermodynamically-constrained mathematical model for the kinetics and regulation of NADPH oxidase 2 complex-mediated electron transfer and superoxide production.
    Tomar N; Sadri S; Cowley AW; Yang C; Quryshi N; Pannala VR; Audi SH; Dash RK
    Free Radic Biol Med; 2019 Apr; 134():581-597. PubMed ID: 30769160
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pharmacological characterization of the seven human NOX isoforms and their inhibitors.
    Augsburger F; Filippova A; Rasti D; Seredenina T; Lam M; Maghzal G; Mahiout Z; Jansen-Dürr P; Knaus UG; Doroshow J; Stocker R; Krause KH; Jaquet V
    Redox Biol; 2019 Sep; 26():101272. PubMed ID: 31330481
    [TBL] [Abstract][Full Text] [Related]  

  • 24. NOX/NADPH oxidase, the superoxide-generating enzyme: its transcriptional regulation and physiological roles.
    Katsuyama M
    J Pharmacol Sci; 2010; 114(2):134-46. PubMed ID: 20838023
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular insights of NADPH oxidases and its pathological consequences.
    Waghela BN; Vaidya FU; Agrawal Y; Santra MK; Mishra V; Pathak C
    Cell Biochem Funct; 2021 Mar; 39(2):218-234. PubMed ID: 32975319
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nox NADPH oxidases and the endoplasmic reticulum.
    Laurindo FR; Araujo TL; Abrahão TB
    Antioxid Redox Signal; 2014 Jun; 20(17):2755-75. PubMed ID: 24386930
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Methods for Detection of NOX-Derived Superoxide Radical Anion and Hydrogen Peroxide in Cells.
    Augsburger F; Filippova A; Jaquet V
    Methods Mol Biol; 2019; 1982():233-241. PubMed ID: 31172475
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pathophysiology and Treatments of Oxidative Injury in Ischemic Stroke: Focus on the Phagocytic NADPH Oxidase 2.
    Carbone F; Teixeira PC; Braunersreuther V; Mach F; Vuilleumier N; Montecucco F
    Antioxid Redox Signal; 2015 Aug; 23(5):460-89. PubMed ID: 24635113
    [TBL] [Abstract][Full Text] [Related]  

  • 29. New insights on NOX enzymes in the central nervous system.
    Nayernia Z; Jaquet V; Krause KH
    Antioxid Redox Signal; 2014 Jun; 20(17):2815-37. PubMed ID: 24206089
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Oxidative innate immune defenses by Nox/Duox family NADPH oxidases.
    Rada B; Leto TL
    Contrib Microbiol; 2008; 15():164-187. PubMed ID: 18511861
    [TBL] [Abstract][Full Text] [Related]  

  • 31. NOX2 deficiency ameliorates cerebral injury through reduction of complexin II-mediated glutamate excitotoxicity in experimental stroke.
    Wang Z; Wei X; Liu K; Zhang X; Yang F; Zhang H; He Y; Zhu T; Li F; Shi W; Zhang Y; Xu H; Liu J; Yi F
    Free Radic Biol Med; 2013 Dec; 65():942-951. PubMed ID: 23982049
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The role of NADPH oxidases in infectious and inflammatory diseases.
    Taylor JP; Tse HM
    Redox Biol; 2021 Dec; 48():102159. PubMed ID: 34627721
    [TBL] [Abstract][Full Text] [Related]  

  • 33. NOX Dependent ROS Generation and Cell Metabolism.
    Pecchillo Cimmino T; Ammendola R; Cattaneo F; Esposito G
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768405
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The NADPH Oxidase Family and Its Inhibitors.
    Chocry M; Leloup L
    Antioxid Redox Signal; 2020 Aug; 33(5):332-353. PubMed ID: 31826639
    [No Abstract]   [Full Text] [Related]  

  • 35. NADPH Oxidases (NOX): An Overview from Discovery, Molecular Mechanisms to Physiology and Pathology.
    Vermot A; Petit-Härtlein I; Smith SME; Fieschi F
    Antioxidants (Basel); 2021 Jun; 10(6):. PubMed ID: 34205998
    [TBL] [Abstract][Full Text] [Related]  

  • 36. NADPH oxidases: a perspective on reactive oxygen species production in tumor biology.
    Meitzler JL; Antony S; Wu Y; Juhasz A; Liu H; Jiang G; Lu J; Roy K; Doroshow JH
    Antioxid Redox Signal; 2014 Jun; 20(17):2873-89. PubMed ID: 24156355
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Crystal structures and atomic model of NADPH oxidase.
    Magnani F; Nenci S; Millana Fananas E; Ceccon M; Romero E; Fraaije MW; Mattevi A
    Proc Natl Acad Sci U S A; 2017 Jun; 114(26):6764-6769. PubMed ID: 28607049
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evolution of NADPH Oxidase Inhibitors: Selectivity and Mechanisms for Target Engagement.
    Altenhöfer S; Radermacher KA; Kleikers PW; Wingler K; Schmidt HH
    Antioxid Redox Signal; 2015 Aug; 23(5):406-27. PubMed ID: 24383718
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology.
    Bedard K; Krause KH
    Physiol Rev; 2007 Jan; 87(1):245-313. PubMed ID: 17237347
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular mechanisms of the crosstalk between mitochondria and NADPH oxidase through reactive oxygen species-studies in white blood cells and in animal models.
    Kröller-Schön S; Steven S; Kossmann S; Scholz A; Daub S; Oelze M; Xia N; Hausding M; Mikhed Y; Zinssius E; Mader M; Stamm P; Treiber N; Scharffetter-Kochanek K; Li H; Schulz E; Wenzel P; Münzel T; Daiber A
    Antioxid Redox Signal; 2014 Jan; 20(2):247-66. PubMed ID: 23845067
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 30.