These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 29115133)

  • 1. Pursuing the Promise of Enzymatic Enhancement with Nanoparticle Assemblies.
    Vranish JN; Ancona MG; Walper SA; Medintz IL
    Langmuir; 2018 Mar; 34(9):2901-2925. PubMed ID: 29115133
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing Coupled Enzymatic Activity by Colocalization on Nanoparticle Surfaces: Kinetic Evidence for Directed Channeling of Intermediates.
    Vranish JN; Ancona MG; Oh E; Susumu K; Lasarte Aragonés G; Breger JC; Walper SA; Medintz IL
    ACS Nano; 2018 Aug; 12(8):7911-7926. PubMed ID: 30044604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing coupled enzymatic activity by conjugating one enzyme to a nanoparticle.
    Vranish JN; Ancona MG; Oh E; Susumu K; Medintz IL
    Nanoscale; 2017 Apr; 9(16):5172-5187. PubMed ID: 28393943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Small Surface, Big Effects, and Big Challenges: Toward Understanding Enzymatic Activity at the Inorganic Nanoparticle-Substrate Interface.
    Algar WR; Jeen T; Massey M; Peveler WJ; Asselin J
    Langmuir; 2019 Jun; 35(22):7067-7091. PubMed ID: 30415548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymes and nanoparticles: Modulation of enzymatic activity via nanoparticles.
    Arsalan A; Younus H
    Int J Biol Macromol; 2018 Oct; 118(Pt B):1833-1847. PubMed ID: 30006013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Step into the Future: Applications of Nanoparticle Enzyme Mimics.
    Korschelt K; Tahir MN; Tremel W
    Chemistry; 2018 Jul; 24(39):9703-9713. PubMed ID: 29447433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing enzymatic performance with nanoparticle immobilization: improved analytical and control capability for synthetic biochemistry.
    Ellis GA; Díaz SA; Medintz IL
    Curr Opin Biotechnol; 2021 Oct; 71():77-90. PubMed ID: 34293630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of Dehydrogenase Enzymes with Nanoparticles in Industrial and Medical Applications, and the Associated Challenges: A Mini-review.
    Porzani SJ; Lorenzi AS; Eghtedari M; Nowruzi B
    Mini Rev Med Chem; 2021; 21(11):1351-1366. PubMed ID: 33213343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrasensitive nucleic acid biosensor based on enzyme-gold nanoparticle dual label and lateral flow strip biosensor.
    He Y; Zhang S; Zhang X; Baloda M; Gurung AS; Xu H; Zhang X; Liu G
    Biosens Bioelectron; 2011 Jan; 26(5):2018-24. PubMed ID: 20875950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gold nanoparticles/4-aminothiophenol interfaces for direct electron transfer of horseradish peroxidase: Enzymatic orientation and modulation of sensitivity towards hydrogen peroxide detection.
    Huerta-Miranda GA; Arrocha-Arcos AA; Miranda-Hernández M
    Bioelectrochemistry; 2018 Aug; 122():77-83. PubMed ID: 29574321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-assembly of nanoparticle arrays for use as mirrors, sensors, and antennas.
    Edel JB; Kornyshev AA; Urbakh M
    ACS Nano; 2013 Nov; 7(11):9526-32. PubMed ID: 24237248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid schemes based on quantum mechanics/molecular mechanics simulations goals to success, problems, and perspectives.
    Ferrer S; Ruiz-Pernía J; Martí S; Moliner V; Tuñón I; Bertrán J; Andrés J
    Adv Protein Chem Struct Biol; 2011; 85():81-142. PubMed ID: 21920322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface Modification of Gold Nanoparticles with Small Molecules for Biochemical Analysis.
    Chen Y; Xianyu Y; Jiang X
    Acc Chem Res; 2017 Feb; 50(2):310-319. PubMed ID: 28068053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanotechnology as a therapeutic tool to combat microbial resistance.
    Pelgrift RY; Friedman AJ
    Adv Drug Deliv Rev; 2013 Nov; 65(13-14):1803-15. PubMed ID: 23892192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving colorimetric assays through protein enzyme-assisted gold nanoparticle amplification.
    Xie X; Xu W; Liu X
    Acc Chem Res; 2012 Sep; 45(9):1511-20. PubMed ID: 22786666
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High sensitive trypsin activity evaluation applying a nanostructured QCM-sensor.
    Stoytcheva M; Zlatev R; Cosnier S; Arredondo M; Valdez B
    Biosens Bioelectron; 2013 Mar; 41():862-6. PubMed ID: 22964383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances in engineering proteins for biocatalysis.
    Li Y; Cirino PC
    Biotechnol Bioeng; 2014 Jul; 111(7):1273-87. PubMed ID: 24802032
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced Catalysis from Multienzyme Cascades Assembled on a DNA Origami Triangle.
    Klein WP; Thomsen RP; Turner KB; Walper SA; Vranish J; Kjems J; Ancona MG; Medintz IL
    ACS Nano; 2019 Dec; 13(12):13677-13689. PubMed ID: 31751123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The controlled display of biomolecules on nanoparticles: a challenge suited to bioorthogonal chemistry.
    Algar WR; Prasuhn DE; Stewart MH; Jennings TL; Blanco-Canosa JB; Dawson PE; Medintz IL
    Bioconjug Chem; 2011 May; 22(5):825-58. PubMed ID: 21585205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzyme nanoparticle fabrication: magnetic nanoparticle synthesis and enzyme immobilization.
    Johnson PA; Park HJ; Driscoll AJ
    Methods Mol Biol; 2011; 679():183-91. PubMed ID: 20865397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.