These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 29115280)
1. Real-time cerebellar neuroprosthetic system based on a spiking neural network model of motor learning. Xu T; Xiao N; Zhai X; Kwan Chan P; Tin C J Neural Eng; 2018 Feb; 15(1):016021. PubMed ID: 29115280 [TBL] [Abstract][Full Text] [Related]
2. Model-Driven Analysis of Eyeblink Classical Conditioning Reveals the Underlying Structure of Cerebellar Plasticity and Neuronal Activity. Antonietti A; Casellato C; D'Angelo E; Pedrocchi A IEEE Trans Neural Netw Learn Syst; 2017 Nov; 28(11):2748-2762. PubMed ID: 27608482 [TBL] [Abstract][Full Text] [Related]
3. Spiking Neural Network With Distributed Plasticity Reproduces Cerebellar Learning in Eye Blink Conditioning Paradigms. Antonietti A; Casellato C; Garrido JA; Luque NR; Naveros F; Ros E; D' Angelo E; Pedrocchi A IEEE Trans Biomed Eng; 2016 Jan; 63(1):210-9. PubMed ID: 26441441 [TBL] [Abstract][Full Text] [Related]
4. A discrete approach for a model of temporal learning by the cerebellum: in silico classical conditioning of the eyeblink reflex. Garenne A; Chauvet GA J Integr Neurosci; 2004 Sep; 3(3):301-18. PubMed ID: 15366098 [TBL] [Abstract][Full Text] [Related]
5. Real-Time Simulation of Passage-of-Time Encoding in Cerebellum Using a Scalable FPGA-Based System. Luo J; Coapes G; Mak T; Yamazaki T; Tin C; Degenaar P IEEE Trans Biomed Circuits Syst; 2016 Jun; 10(3):742-53. PubMed ID: 26452290 [TBL] [Abstract][Full Text] [Related]
6. Adaptive robotic control driven by a versatile spiking cerebellar network. Casellato C; Antonietti A; Garrido JA; Carrillo RR; Luque NR; Ros E; Pedrocchi A; D'Angelo E PLoS One; 2014; 9(11):e112265. PubMed ID: 25390365 [TBL] [Abstract][Full Text] [Related]
7. Dynamic Redistribution of Plasticity in a Cerebellar Spiking Neural Network Reproducing an Associative Learning Task Perturbed by TMS. Antonietti A; Monaco J; D'Angelo E; Pedrocchi A; Casellato C Int J Neural Syst; 2018 Nov; 28(9):1850020. PubMed ID: 29914314 [TBL] [Abstract][Full Text] [Related]
8. A Multiple-Plasticity Spiking Neural Network Embedded in a Closed-Loop Control System to Model Cerebellar Pathologies. Geminiani A; Casellato C; Antonietti A; D'Angelo E; Pedrocchi A Int J Neural Syst; 2018 Jun; 28(5):1750017. PubMed ID: 28264639 [TBL] [Abstract][Full Text] [Related]
9. Fuzzy neuronal model of motor control inspired by cerebellar pathways to online and gradually learn inverse biomechanical functions in the presence of delay. Salimi-Badr A; Ebadzadeh MM; Darlot C Biol Cybern; 2017 Dec; 111(5-6):421-438. PubMed ID: 28993878 [TBL] [Abstract][Full Text] [Related]
10. ReplaceNet: real-time replacement of a biological neural circuit with a hardware-assisted spiking neural network. Hwang S; Hwang Y; Kim D; Lee J; Choe HK; Lee J; Kang H; Kung J Front Neurosci; 2023; 17():1161592. PubMed ID: 37638314 [TBL] [Abstract][Full Text] [Related]
11. Artificial cerebellum on FPGA: realistic real-time cerebellar spiking neural network model capable of real-world adaptive motor control. Shinji Y; Okuno H; Hirata Y Front Neurosci; 2024; 18():1220908. PubMed ID: 38726031 [TBL] [Abstract][Full Text] [Related]
12. A neuro-inspired model-based closed-loop neuroprosthesis for the substitution of a cerebellar learning function in anesthetized rats. Hogri R; Bamford SA; Taub AH; Magal A; Del Giudice P; Mintz M Sci Rep; 2015 Feb; 5():8451. PubMed ID: 25677559 [TBL] [Abstract][Full Text] [Related]
13. A review of learning in biologically plausible spiking neural networks. Taherkhani A; Belatreche A; Li Y; Cosma G; Maguire LP; McGinnity TM Neural Netw; 2020 Feb; 122():253-272. PubMed ID: 31726331 [TBL] [Abstract][Full Text] [Related]
14. A configurable simulation environment for the efficient simulation of large-scale spiking neural networks on graphics processors. Nageswaran JM; Dutt N; Krichmar JL; Nicolau A; Veidenbaum AV Neural Netw; 2009; 22(5-6):791-800. PubMed ID: 19615853 [TBL] [Abstract][Full Text] [Related]
15. Reevaluating the ability of cerebellum in associative motor learning. Li DB; Yao J; Sun L; Wu B; Li X; Liu SL; Hou JM; Liu HL; Sui JF; Wu GY Sci Rep; 2019 Apr; 9(1):6029. PubMed ID: 30988338 [TBL] [Abstract][Full Text] [Related]
16. Developmental changes in the neural mechanisms of eyeblink conditioning. Freeman JH; Nicholson DA Behav Cogn Neurosci Rev; 2004 Mar; 3(1):3-13. PubMed ID: 15191638 [TBL] [Abstract][Full Text] [Related]
17. The neural circuitry and molecular mechanisms underlying delay and trace eyeblink conditioning in mice. Yang Y; Lei C; Feng H; Sui JF Behav Brain Res; 2015 Feb; 278():307-14. PubMed ID: 25448430 [TBL] [Abstract][Full Text] [Related]
18. Cerebellar transcranial direct current stimulation interacts with BDNF Val66Met in motor learning. van der Vliet R; Jonker ZD; Louwen SC; Heuvelman M; de Vreede L; Ribbers GM; De Zeeuw CI; Donchin O; Selles RW; van der Geest JN; Frens MA Brain Stimul; 2018; 11(4):759-771. PubMed ID: 29680227 [TBL] [Abstract][Full Text] [Related]
19. Distribution of neural plasticity in cerebellum-dependent motor learning. Longley M; Yeo CH Prog Brain Res; 2014; 210():79-101. PubMed ID: 24916290 [TBL] [Abstract][Full Text] [Related]
20. Differences in responses to 70 dB clicks of cerebellar units with simple versus complex spike activity: (i) in medial and lateral ansiform lobes and flocculus; and (ii) before and after conditioning blink conditioned responses with clicks as conditioned stimuli. Woody CD; Nahvi A; Palermo G; Wan J; Wang XF; Gruen E Neuroscience; 1999; 90(4):1227-41. PubMed ID: 10338293 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]