These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 29115280)

  • 21. Neural Manifold Constraint for Spike Prediction Models under Behavioral Reinforcement.
    Wu S; Zhang X; Wang Y
    IEEE Trans Neural Syst Rehabil Eng; 2024 Jul; PP():. PubMed ID: 39074025
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Embodied bidirectional simulation of a spiking cortico-basal ganglia-cerebellar-thalamic brain model and a mouse musculoskeletal body model distributed across computers including the supercomputer Fugaku.
    Kuniyoshi Y; Kuriyama R; Omura S; Gutierrez CE; Sun Z; Feldotto B; Albanese U; Knoll AC; Yamada T; Hirayama T; Morin FO; Igarashi J; Doya K; Yamazaki T
    Front Neurorobot; 2023; 17():1269848. PubMed ID: 37867618
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hippocampome.org v2.0: a knowledge base enabling data-driven spiking neural network simulations of rodent hippocampal circuits.
    Wheeler DW; Kopsick JD; Sutton N; Tecuatl C; Komendantov AO; Nadella K; Ascoli GA
    bioRxiv; 2024 Jan; ():. PubMed ID: 37425693
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Integration of Nanobots Into Neural Circuits As a Future Therapy for Treating Neurodegenerative Disorders.
    Saniotis A; Henneberg M; Sawalma AR
    Front Neurosci; 2018; 12():153. PubMed ID: 29618966
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Artificial cerebellum on FPGA: realistic real-time cerebellar spiking neural network model capable of real-world adaptive motor control.
    Shinji Y; Okuno H; Hirata Y
    Front Neurosci; 2024; 18():1220908. PubMed ID: 38726031
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Real-time field-programmable gate array-based closed-loop deep brain stimulation platform targeting cerebellar circuitry rescues motor deficits in a mouse model of cerebellar ataxia.
    Kumar G; Zhou Z; Wang Z; Kwan KM; Tin C; Ma CHE
    CNS Neurosci Ther; 2024 Mar; 30(3):e14638. PubMed ID: 38488445
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Real-Time Simulation of a Cerebellar Scaffold Model on Graphics Processing Units.
    Kuriyama R; Casellato C; D'Angelo E; Yamazaki T
    Front Cell Neurosci; 2021; 15():623552. PubMed ID: 33897369
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Neuromorphic Prosthesis to Restore Communication in Neuronal Networks.
    Buccelli S; Bornat Y; Colombi I; Ambroise M; Martines L; Pasquale V; Bisio M; Tessadori J; Nowak P; Grassia F; Averna A; Tedesco M; Bonifazi P; Difato F; Massobrio P; Levi T; Chiappalone M
    iScience; 2019 Sep; 19():402-414. PubMed ID: 31421595
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A review of learning in biologically plausible spiking neural networks.
    Taherkhani A; Belatreche A; Li Y; Cosma G; Maguire LP; McGinnity TM
    Neural Netw; 2020 Feb; 122():253-272. PubMed ID: 31726331
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The neural circuitry and molecular mechanisms underlying delay and trace eyeblink conditioning in mice.
    Yang Y; Lei C; Feng H; Sui JF
    Behav Brain Res; 2015 Feb; 278():307-14. PubMed ID: 25448430
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Real-time cerebellar neuroprosthetic system based on a spiking neural network model of motor learning.
    Xu T; Xiao N; Zhai X; Kwan Chan P; Tin C
    J Neural Eng; 2018 Feb; 15(1):016021. PubMed ID: 29115280
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Model-Driven Analysis of Eyeblink Classical Conditioning Reveals the Underlying Structure of Cerebellar Plasticity and Neuronal Activity.
    Antonietti A; Casellato C; D'Angelo E; Pedrocchi A
    IEEE Trans Neural Netw Learn Syst; 2017 Nov; 28(11):2748-2762. PubMed ID: 27608482
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spiking Neural Network With Distributed Plasticity Reproduces Cerebellar Learning in Eye Blink Conditioning Paradigms.
    Antonietti A; Casellato C; Garrido JA; Luque NR; Naveros F; Ros E; D' Angelo E; Pedrocchi A
    IEEE Trans Biomed Eng; 2016 Jan; 63(1):210-9. PubMed ID: 26441441
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A discrete approach for a model of temporal learning by the cerebellum: in silico classical conditioning of the eyeblink reflex.
    Garenne A; Chauvet GA
    J Integr Neurosci; 2004 Sep; 3(3):301-18. PubMed ID: 15366098
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Real-Time Simulation of Passage-of-Time Encoding in Cerebellum Using a Scalable FPGA-Based System.
    Luo J; Coapes G; Mak T; Yamazaki T; Tin C; Degenaar P
    IEEE Trans Biomed Circuits Syst; 2016 Jun; 10(3):742-53. PubMed ID: 26452290
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adaptive robotic control driven by a versatile spiking cerebellar network.
    Casellato C; Antonietti A; Garrido JA; Carrillo RR; Luque NR; Ros E; Pedrocchi A; D'Angelo E
    PLoS One; 2014; 9(11):e112265. PubMed ID: 25390365
    [TBL] [Abstract][Full Text] [Related]  

  • 37.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 38.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 39.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.