These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 29115359)
1. A direct dynamics study of the deprotonated guanine·cytosine base pair: intra-base pair proton transfer, thermal dissociation vs. collision-induced dissociation, and comparison with experiment. Liu J Phys Chem Chem Phys; 2017 Nov; 19(45):30616-30626. PubMed ID: 29115359 [TBL] [Abstract][Full Text] [Related]
2. Singlet O Lu W; Sun Y; Tsai M; Zhou W; Liu J Chemphyschem; 2018 Oct; 19(20):2645-2654. PubMed ID: 30047606 [TBL] [Abstract][Full Text] [Related]
3. Is non-statistical dissociation a general feature of guanine-cytosine base-pair ions? Collision-induced dissociation of a protonated 9-methylguanine-1-methylcytosine Watson-Crick base pair, and comparison with its deprotonated and radical cation analogues. Sun Y; Moe MM; Liu J Phys Chem Chem Phys; 2020 Nov; 22(43):24986-25000. PubMed ID: 33112302 [TBL] [Abstract][Full Text] [Related]
4. Deprotonated guanine·cytosine and 9-methylguanine·cytosine base pairs and their "non-statistical" kinetics: a combined guided-ion beam and computational study. Lu W; Liu J Phys Chem Chem Phys; 2016 Nov; 18(47):32222-32237. PubMed ID: 27849082 [TBL] [Abstract][Full Text] [Related]
5. Mass spectrometry and computational study of collision-induced dissociation of 9-methylguanine-1-methylcytosine base-pair radical cation: intra-base-pair proton transfer and hydrogen transfer, non-statistical dissociation, and reaction with a water ligand. Sun Y; Moe MM; Liu J Phys Chem Chem Phys; 2020 Jul; 22(26):14875-14888. PubMed ID: 32582893 [TBL] [Abstract][Full Text] [Related]
6. Proton Transfer Accounting for Anomalous Collision-Induced Dissociation of Proton-Bound Hoogsteen Base Pair of Cytosine and Guanine. Park JJ; Lee CS; Han SY J Am Soc Mass Spectrom; 2018 Dec; 29(12):2368-2379. PubMed ID: 30215166 [TBL] [Abstract][Full Text] [Related]
7. Experimental and theoretical assessment of protonated Hoogsteen 9-methylguanine-1-methylcytosine base-pair dissociation: kinetics within a statistical reaction framework. Moe MM; Benny J; Sun Y; Liu J Phys Chem Chem Phys; 2021 Apr; 23(15):9365-9380. PubMed ID: 33885080 [TBL] [Abstract][Full Text] [Related]
8. Collision-induced dissociation of homodimeric and heterodimeric radical cations of 9-methylguanine and 9-methyl-8-oxoguanine: correlation between intra-base pair proton transfer originating from the N1-H at a Watson-Crick edge and non-statistical dissociation. Moe MM; Benny J; Liu J Phys Chem Chem Phys; 2022 Apr; 24(16):9263-9276. PubMed ID: 35403654 [TBL] [Abstract][Full Text] [Related]
9. Hydrogen-bonded proton transfer in the protonated guanine-cytosine (GC+H)+ base pair. Lin Y; Wang H; Gao S; Schaefer HF J Phys Chem B; 2011 Oct; 115(40):11746-56. PubMed ID: 21888406 [TBL] [Abstract][Full Text] [Related]
10. Effects of OH radical addition on proton transfer in the guanine-cytosine base pair. Zhang Rb; Eriksson LA J Phys Chem B; 2007 Jun; 111(23):6571-6. PubMed ID: 17506547 [TBL] [Abstract][Full Text] [Related]
11. Model Simulations of the Thermal Dissociation of the TIK(H Homayoon Z; Pratihar S; Dratz E; Snider R; Spezia R; Barnes GL; Macaluso V; Martin Somer A; Hase WL J Phys Chem A; 2016 Oct; 120(42):8211-8227. PubMed ID: 27673376 [TBL] [Abstract][Full Text] [Related]
12. Marked variations of dissociation energy and H-bond character of the guanine-cytosine base pair induced by one-electron oxidation and Li+ cation coupling. Sun L; Bu Y J Phys Chem B; 2005 Jan; 109(1):593-600. PubMed ID: 16851051 [TBL] [Abstract][Full Text] [Related]
13. (G-H)*-C and G-(C-H)* radicals derived from the guanine.cytosine base pair cause DNA subunit lesions. Bera PP; Schaefer HF Proc Natl Acad Sci U S A; 2005 May; 102(19):6698-703. PubMed ID: 15814617 [TBL] [Abstract][Full Text] [Related]
14. Base-pair interactions in the gas-phase proton-bonded complexes of C+G and C+GC. Han SY; Lee SH; Chung J; Oh HB J Chem Phys; 2007 Dec; 127(24):245102. PubMed ID: 18163711 [TBL] [Abstract][Full Text] [Related]
15. Theoretical exploration of structures and electronic properties of double-electron oxidized guanine-cytosine base pairs with intriguing radical-radical interactions. Wang M; Zhao J; Bu Y Phys Chem Chem Phys; 2013 Nov; 15(42):18453-63. PubMed ID: 24064497 [TBL] [Abstract][Full Text] [Related]
16. Theoretical study of excess electron attachment dynamics to the guanine-cytosine base pair: electronic structure calculations and ring-polymer molecular dynamics simulations. Sugioka Y; Yoshikawa T; Takayanagi T J Phys Chem A; 2013 Nov; 117(45):11403-10. PubMed ID: 24148030 [TBL] [Abstract][Full Text] [Related]
17. Excited States of One-Electron Oxidized Guanine-Cytosine Base Pair Radicals: A Time Dependent Density Functional Theory Study. Kumar A; Sevilla MD J Phys Chem A; 2019 Apr; 123(14):3098-3108. PubMed ID: 30896952 [TBL] [Abstract][Full Text] [Related]
18. The deprotonated guanine-cytosine base pair. Lind MC; Bera PP; Richardson NA; Wheeler SE; Schaefer HF Proc Natl Acad Sci U S A; 2006 May; 103(20):7554-9. PubMed ID: 16684882 [TBL] [Abstract][Full Text] [Related]
19. Proton transfer in guanine-cytosine radical anion embedded in B-form DNA. Chen HY; Kao CL; Hsu SC J Am Chem Soc; 2009 Nov; 131(43):15930-8. PubMed ID: 19860482 [TBL] [Abstract][Full Text] [Related]
20. Photoinduced electron detachment and proton transfer: the proposal for alternative path of formation of triplet states of guanine (G) and cytosine (C) pair. Gu J; Wang J; Leszczynski J J Phys Chem B; 2015 Feb; 119(6):2454-8. PubMed ID: 25340559 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]