BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 2911565)

  • 1. Protein secondary structure prediction with a neural network.
    Holley LH; Karplus M
    Proc Natl Acad Sci U S A; 1989 Jan; 86(1):152-6. PubMed ID: 2911565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein secondary structure and homology by neural networks. The alpha-helices in rhodopsin.
    Bohr H; Bohr J; Brunak S; Cotterill RM; Lautrup B; Nørskov L; Olsen OH; Petersen SB
    FEBS Lett; 1988 Dec; 241(1-2):223-8. PubMed ID: 3197832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of secondary structural content of proteins from their amino acid composition alone. I. New analytic vector decomposition methods.
    Eisenhaber F; Imperiale F; Argos P; Frömmel C
    Proteins; 1996 Jun; 25(2):157-68. PubMed ID: 8811732
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting the secondary structure of globular proteins using neural network models.
    Qian N; Sejnowski TJ
    J Mol Biol; 1988 Aug; 202(4):865-84. PubMed ID: 3172241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein secondary structure prediction with partially recurrent neural networks.
    Reczko M
    SAR QSAR Environ Res; 1993; 1(2-3):153-9. PubMed ID: 8790631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting protein secondary structure using neural net and statistical methods.
    Stolorz P; Lapedes A; Xia Y
    J Mol Biol; 1992 May; 225(2):363-77. PubMed ID: 1593625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein secondary structure prediction with SPARROW.
    Bettella F; Rasinski D; Knapp EW
    J Chem Inf Model; 2012 Feb; 52(2):545-56. PubMed ID: 22224407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly accurate and consistent method for prediction of helix and strand content from primary protein sequences.
    Ruan J; Wang K; Yang J; Kurgan LA; Cios K
    Artif Intell Med; 2005; 35(1-2):19-35. PubMed ID: 16081261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Limits on alpha-helix prediction with neural network models.
    Hayward S; Collins JF
    Proteins; 1992 Nov; 14(3):372-81. PubMed ID: 1438176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein secondary structure prediction using local alignments.
    Salamov AA; Solovyev VV
    J Mol Biol; 1997 Apr; 268(1):31-6. PubMed ID: 9149139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein contact prediction using patterns of correlation.
    Hamilton N; Burrage K; Ragan MA; Huber T
    Proteins; 2004 Sep; 56(4):679-84. PubMed ID: 15281121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural network-based prediction of mutation-induced protein stability changes in Staphylococcal nuclease at 20 residue positions.
    Frenz CM
    Proteins; 2005 May; 59(2):147-51. PubMed ID: 15723345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid system for protein secondary structure prediction.
    Zhang X; Mesirov JP; Waltz DL
    J Mol Biol; 1992 Jun; 225(4):1049-63. PubMed ID: 1613789
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved prediction of protein secondary structure by use of sequence profiles and neural networks.
    Rost B; Sander C
    Proc Natl Acad Sci U S A; 1993 Aug; 90(16):7558-62. PubMed ID: 8356056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein secondary structure prediction using a small training set (compact model) combined with a Complex-valued neural network approach.
    Rashid S; Saraswathi S; Kloczkowski A; Sundaram S; Kolinski A
    BMC Bioinformatics; 2016 Sep; 17(1):362. PubMed ID: 27618812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of amino acid environment-dependent substitution tables and conformational propensities in structure prediction from aligned sequences of homologous proteins. II. Secondary structures.
    Wako H; Blundell TL
    J Mol Biol; 1994 May; 238(5):693-708. PubMed ID: 8182744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicted alpha-helix/beta-sheet secondary structures for the zinc-binding motifs of human papillomavirus E7 and E6 proteins by consensus prediction averaging and spectroscopic studies of E7.
    Ullman CG; Haris PI; Galloway DA; Emery VC; Perkins SJ
    Biochem J; 1996 Oct; 319 ( Pt 1)(Pt 1):229-39. PubMed ID: 8870673
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving prediction of protein secondary structure using structured neural networks and multiple sequence alignments.
    Riis SK; Krogh A
    J Comput Biol; 1996; 3(1):163-83. PubMed ID: 8697234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Context-based features enhance protein secondary structure prediction accuracy.
    Yaseen A; Li Y
    J Chem Inf Model; 2014 Mar; 54(3):992-1002. PubMed ID: 24571803
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of variable selection in modeling the secondary structural content of proteins from their composition of amino acid residues.
    Pilizota T; Lucić B; Trinajstić N
    J Chem Inf Comput Sci; 2004; 44(1):113-21. PubMed ID: 14741017
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.