BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 29115913)

  • 1. Exploring the activities of ruthenium nanomaterials as reactive oxygen species scavengers.
    Cao GJ; Jiang X; Zhang H; Zheng J; Croley TR; Yin JJ
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2017 Oct; 35(4):223-238. PubMed ID: 29115913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. pH dependent catalytic activities of platinum nanoparticles with respect to the decomposition of hydrogen peroxide and scavenging of superoxide and singlet oxygen.
    Liu Y; Wu H; Li M; Yin JJ; Nie Z
    Nanoscale; 2014 Oct; 6(20):11904-10. PubMed ID: 25175625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring environment-dependent effects of Pd nanostructures on reactive oxygen species (ROS) using electron spin resonance (ESR) technique: implications for biomedical applications.
    Wen T; He W; Chong Y; Liu Y; Yin JJ; Wu X
    Phys Chem Chem Phys; 2015 Oct; 17(38):24937-43. PubMed ID: 26344402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic analysis of superoxide anion radical-scavenging and hydroxyl radical-scavenging activities of platinum nanoparticles.
    Hamasaki T; Kashiwagi T; Imada T; Nakamichi N; Aramaki S; Toh K; Morisawa S; Shimakoshi H; Hisaeda Y; Shirahata S
    Langmuir; 2008 Jul; 24(14):7354-64. PubMed ID: 18553993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 2,3-diarylxanthones as strong scavengers of reactive oxygen and nitrogen species: a structure-activity relationship study.
    Santos CM; Freitas M; Ribeiro D; Gomes A; Silva AM; Cavaleiro JA; Fernandes E
    Bioorg Med Chem; 2010 Sep; 18(18):6776-84. PubMed ID: 20709556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intrinsic catalytic activity of rhodium nanoparticles with respect to reactive oxygen species scavenging: implication for diminishing cytotoxicity.
    Cao GJ; Chen Y; Chen X; Weng P; Lin RG
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2019; 37(1):14-25. PubMed ID: 30601677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radical scavenging activity of bisbenzylisoquinoline alkaloids and traditional prophylactics against chemotherapy-induced oral mucositis.
    Kaji H; Inukai Y; Maiguma T; Ono H; Teshima D; Hiramoto K; Makino K
    J Clin Pharm Ther; 2009 Apr; 34(2):197-205. PubMed ID: 19250140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. S-allylcysteine scavenges singlet oxygen and hypochlorous acid and protects LLC-PK(1) cells of potassium dichromate-induced toxicity.
    Medina-Campos ON; Barrera D; Segoviano-Murillo S; Rocha D; Maldonado PD; Mendoza-Patiño N; Pedraza-Chaverri J
    Food Chem Toxicol; 2007 Oct; 45(10):2030-9. PubMed ID: 17576034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydroxyl and superoxide radical scavenging abilities of chromonyl-thiazolidine-2,4-dione compounds.
    Kruk I; Bozdağ-Dündar O; Ertan R; Aboul-Enein HY; Michalska T
    Luminescence; 2009; 24(2):96-101. PubMed ID: 18785617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile detection of photogenerated reactive oxygen species in TiO2 nanoparticles suspension using colorimetric probe-assisted spectrometric method.
    Kim C; Park HJ; Cha S; Yoon J
    Chemosphere; 2013 Nov; 93(9):2011-5. PubMed ID: 23953250
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scavenging of reactive oxygen species by chlorophyllin: an ESR study.
    Kumar SS; Devasagayam TP; Bhushan B; Verma NC
    Free Radic Res; 2001 Nov; 35(5):563-74. PubMed ID: 11767414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The activity of recombinant human neuroglobin as an antioxidant and free radical scavenger.
    Li W; Wu Y; Ren C; Lu Y; Gao Y; Zheng X; Zhang C
    Proteins; 2011 Jan; 79(1):115-25. PubMed ID: 20938977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms of the pH dependent generation of hydroxyl radicals and oxygen induced by Ag nanoparticles.
    He W; Zhou YT; Wamer WG; Boudreau MD; Yin JJ
    Biomaterials; 2012 Oct; 33(30):7547-55. PubMed ID: 22809647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro scavenging activity for reactive oxygen species by N-substituted indole-2-carboxylic acid esters.
    Kruk I; Aboul-Enein HY; Michalska T; Lichszteld K; Kubasik-Kladna K; Olgen S
    Luminescence; 2007; 22(4):379-86. PubMed ID: 17471487
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scavenging capacities of some thiazolyl thiazolidine-2,4-dione compounds on superoxide radical, hydroxyl radical, and DPPH radical.
    Kruk I; Bozdağ-Dündar O; Ceylan-Unlüsoy M; Ertan R; Aboul-Enein HY; Michalska T
    Luminescence; 2009; 24(4):230-5. PubMed ID: 19253274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radical scavenging-linked antioxidant activity of ethanolic extracts of diverse types of extra virgin olive oils.
    Lee OH; Lee BY; Kim YC; Shetty K; Kim YC
    J Food Sci; 2008 Sep; 73(7):C519-25. PubMed ID: 18803696
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reactions of reactive oxygen species (ROS) with curcumin analogues: Structure-activity relationship.
    Singh U; Barik A; Singh BG; Priyadarsini KI
    Free Radic Res; 2011 Mar; 45(3):317-25. PubMed ID: 21034358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reactive oxygen species at phospholipid bilayers: distribution, mobility and permeation.
    Cordeiro RM
    Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):438-44. PubMed ID: 24095673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polysulfides and products of H
    Misak A; Grman M; Bacova Z; Rezuchova I; Hudecova S; Ondriasova E; Krizanova O; Brezova V; Chovanec M; Ondrias K
    Nitric Oxide; 2018 Jun; 76():136-151. PubMed ID: 28951200
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The radical scavenging abilities of a new anti-nephritic drug, OPC-15161.
    Ozawa T; Nakano Y
    Biochem Mol Biol Int; 1996 Feb; 38(2):231-8. PubMed ID: 8850518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.