BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 29115978)

  • 1. Depletion of somatic mutations in splicing-associated sequences in cancer genomes.
    Hurst LD; Batada NN
    Genome Biol; 2017 Nov; 18(1):213. PubMed ID: 29115978
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Why Selection Might Be Stronger When Populations Are Small: Intron Size and Density Predict within and between-Species Usage of Exonic Splice Associated cis-Motifs.
    Wu X; Hurst LD
    Mol Biol Evol; 2015 Jul; 32(7):1847-61. PubMed ID: 25771198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purifying Selection on Exonic Splice Enhancers in Intronless Genes.
    Savisaar R; Hurst LD
    Mol Biol Evol; 2016 Jun; 33(6):1396-418. PubMed ID: 26802218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Positive selection acting on splicing motifs reflects compensatory evolution.
    Ke S; Zhang XH; Chasin LA
    Genome Res; 2008 Apr; 18(4):533-43. PubMed ID: 18204002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genomic features defining exonic variants that modulate splicing.
    Woolfe A; Mullikin JC; Elnitski L
    Genome Biol; 2010; 11(2):R20. PubMed ID: 20158892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Massive computational identification of somatic variants in exonic splicing enhancers using The Cancer Genome Atlas.
    Tanimoto K; Muramatsu T; Inazawa J
    Cancer Med; 2019 Dec; 8(17):7372-7384. PubMed ID: 31631560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Seemingly neutral polymorphic variants may confer immunity to splicing-inactivating mutations: a synonymous SNP in exon 5 of MCAD protects from deleterious mutations in a flanking exonic splicing enhancer.
    Nielsen KB; Sørensen S; Cartegni L; Corydon TJ; Doktor TK; Schroeder LD; Reinert LS; Elpeleg O; Krainer AR; Gregersen N; Kjems J; Andresen BS
    Am J Hum Genet; 2007 Mar; 80(3):416-32. PubMed ID: 17273963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutational bias and the protein code shape the evolution of splicing enhancers.
    Rong S; Buerer L; Rhine CL; Wang J; Cygan KJ; Fairbrother WG
    Nat Commun; 2020 Jun; 11(1):2845. PubMed ID: 32504065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of a splicing enhancer in MLH1 using COMPARE, a new assay for determination of relative RNA splicing efficiencies.
    Xu DQ; Mattox W
    Hum Mol Genet; 2006 Jan; 15(2):329-36. PubMed ID: 16357104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimating the prevalence of functional exonic splice regulatory information.
    Savisaar R; Hurst LD
    Hum Genet; 2017 Sep; 136(9):1059-1078. PubMed ID: 28405812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for purifying selection against synonymous mutations in mammalian exonic splicing enhancers.
    Parmley JL; Chamary JV; Hurst LD
    Mol Biol Evol; 2006 Feb; 23(2):301-9. PubMed ID: 16221894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Li-Fraumeni and Li-Fraumeni-like syndrome mutations in p53 are associated with exonic methylation and splicing regulatory elements.
    Kouidou S; Malousi A; Maglaveras N
    Mol Carcinog; 2009 Oct; 48(10):895-902. PubMed ID: 19367569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An exonic splicing enhancer offsets the atypical GU-rich 3' splice site of human apolipoprotein A-II exon 3.
    Arrisi-Mercado P; Romano M; Muro AF; Baralle FE
    J Biol Chem; 2004 Sep; 279(38):39331-9. PubMed ID: 15247216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The evolution, impact and properties of exonic splice enhancers.
    Cáceres EF; Hurst LD
    Genome Biol; 2013 Dec; 14(12):R143. PubMed ID: 24359918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exonic splice regulation imposes strong selection at synonymous sites.
    Savisaar R; Hurst LD
    Genome Res; 2018 Oct; 28(10):1442-1454. PubMed ID: 30143596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determinants of the Usage of Splice-Associated cis-Motifs Predict the Distribution of Human Pathogenic SNPs.
    Wu X; Hurst LD
    Mol Biol Evol; 2016 Feb; 33(2):518-29. PubMed ID: 26545919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational prediction of splicing regulatory elements shared by Tetrapoda organisms.
    Churbanov A; Vorechovský I; Hicks C
    BMC Genomics; 2009 Nov; 10():508. PubMed ID: 19889216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compensatory relationship between splice sites and exonic splicing signals depending on the length of vertebrate introns.
    Dewey CN; Rogozin IB; Koonin EV
    BMC Genomics; 2006 Dec; 7():311. PubMed ID: 17156453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of disease-associated HRPT2 mutations on splicing.
    Hahn MA; McDonnell J; Marsh DJ
    J Endocrinol; 2009 Jun; 201(3):387-96. PubMed ID: 19332451
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Splicing analysis disclosed a determinant single nucleotide for exon skipping caused by a novel intraexonic four-nucleotide deletion in the dystrophin gene.
    Tran VK; Takeshima Y; Zhang Z; Yagi M; Nishiyama A; Habara Y; Matsuo M
    J Med Genet; 2006 Dec; 43(12):924-30. PubMed ID: 16738009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.