These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 29116006)

  • 1. Analysis of near infrared spectra for age-grading of wild populations of Anopheles gambiae.
    Krajacich BJ; Meyers JI; Alout H; Dabiré RK; Dowell FE; Foy BD
    Parasit Vectors; 2017 Nov; 10(1):552. PubMed ID: 29116006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adapting field-mosquito collection techniques in a perspective of near-infrared spectroscopy implementation.
    Somé BM; Da DF; McCabe R; Djègbè NDC; Paré LIG; Wermé K; Mouline K; Lefèvre T; Ouédraogo AG; Churcher TS; Dabiré RK
    Parasit Vectors; 2022 Sep; 15(1):338. PubMed ID: 36163071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Age grading An. gambiae and An. arabiensis using near infrared spectra and artificial neural networks.
    Milali MP; Sikulu-Lord MT; Kiware SS; Dowell FE; Corliss GF; Povinelli RJ
    PLoS One; 2019; 14(8):e0209451. PubMed ID: 31412028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An autoencoder and artificial neural network-based method to estimate parity status of wild mosquitoes from near-infrared spectra.
    Milali MP; Kiware SS; Govella NJ; Okumu F; Bansal N; Bozdag S; Charlwood JD; Maia MF; Ogoma SB; Dowell FE; Corliss GF; Sikulu-Lord MT; Povinelli RJ
    PLoS One; 2020; 15(6):e0234557. PubMed ID: 32555660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of Plasmodium berghei infected Anopheles stephensi using near-infrared spectroscopy.
    Esperança PM; Blagborough AM; Da DF; Dowell FE; Churcher TS
    Parasit Vectors; 2018 Jun; 11(1):377. PubMed ID: 29954424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of Plasmodium falciparum in laboratory-reared and naturally infected wild mosquitoes using near-infrared spectroscopy.
    Da DF; McCabe R; Somé BM; Esperança PM; Sala KA; Blight J; Blagborough AM; Dowell F; Yerbanga SR; Lefèvre T; Mouline K; Dabiré RK; Churcher TS
    Sci Rep; 2021 May; 11(1):10289. PubMed ID: 33986416
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of Plasmodium falciparum infected Anopheles gambiae using near-infrared spectroscopy.
    Maia MF; Kapulu M; Muthui M; Wagah MG; Ferguson HM; Dowell FE; Baldini F; Ranford-Cartwright L
    Malar J; 2019 Mar; 18(1):85. PubMed ID: 30890179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Infection of highly insecticide-resistant malaria vector Anopheles coluzzii with entomopathogenic bacteria Chromobacterium violaceum reduces its survival, blood feeding propensity and fecundity.
    Gnambani EJ; Bilgo E; Sanou A; Dabiré RK; Diabaté A
    Malar J; 2020 Oct; 19(1):352. PubMed ID: 33008454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ability of near-infrared spectroscopy and chemometrics to predict the age of mosquitoes reared under different conditions.
    Ong OTW; Kho EA; Esperança PM; Freebairn C; Dowell FE; Devine GJ; Churcher TS
    Parasit Vectors; 2020 Mar; 13(1):160. PubMed ID: 32228670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid age-grading and species identification of natural mosquitoes for malaria surveillance.
    Siria DJ; Sanou R; Mitton J; Mwanga EP; Niang A; Sare I; Johnson PCD; Foster GM; Belem AMG; Wynne K; Murray-Smith R; Ferguson HM; González-Jiménez M; Babayan SA; Diabaté A; Okumu FO; Baldini F
    Nat Commun; 2022 Mar; 13(1):1501. PubMed ID: 35314683
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of infectivity of Plasmodium vivax to wild-caught and laboratory-adapted (colonized) Anopheles arabiensis mosquitoes in Ethiopia.
    Chali W; Ashine T; Hailemeskel E; Gashaw A; Tafesse T; Lanke K; Esayas E; Kedir S; Shumie G; Behaksra SW; Bradley J; Yewhalaw D; Mamo H; Petros B; Drakeley C; Gadisa E; Bousema T; Tadesse FG
    Parasit Vectors; 2020 Mar; 13(1):120. PubMed ID: 32143713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of sample preservation methods and duration of storage on the performance of mid-infrared spectroscopy for predicting the age of malaria vectors.
    Mgaya JN; Siria DJ; Makala FE; Mgando JP; Vianney JM; Mwanga EP; Okumu FO
    Parasit Vectors; 2022 Aug; 15(1):281. PubMed ID: 35933384
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficacy of the mermithid nematode, Romanomermis iyengari, for the biocontrol of Anopheles gambiae, the major malaria vector in sub-Saharan Africa.
    Abagli AZ; Alavo TBC; Perez-Pacheco R; Platzer EG
    Parasit Vectors; 2019 May; 12(1):253. PubMed ID: 31118105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Malaria vectors diversity, insecticide resistance and transmission during the rainy season in peri-urban villages of south-western Burkina Faso.
    Soma DD; Poda SB; Hien AS; Namountougou M; Sangaré I; Sawadogo JME; Fournet F; Ouédraogo GA; Diabaté A; Moiroux N; Dabiré RK
    Malar J; 2021 Jan; 20(1):63. PubMed ID: 33494779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Malaria transmission in 1999 in the rice field area of the Kou Valley (Bama), (Burkina Faso)].
    Baldet T; Diabaté A; Guiguemdé TR
    Sante; 2003; 13(1):55-60. PubMed ID: 12925325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aging partially restores the efficacy of malaria vector control in insecticide-resistant populations of Anopheles gambiae s.l. from Burkina Faso.
    Jones CM; Sanou A; Guelbeogo WM; Sagnon N; Johnson PC; Ranson H
    Malar J; 2012 Jan; 11():24. PubMed ID: 22269002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Species composition, blood meal hosts and Plasmodium infection rates of Anopheles mosquitoes in Ghibe River Basin, southwestern Ethiopia.
    Getachew D; Gebre-Michael T; Balkew M; Tekie H
    Parasit Vectors; 2019 May; 12(1):257. PubMed ID: 31122286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anopheles gambiae (s.l.) is found where few are looking: assessing mosquito diversity and density outside inhabited areas using diverse sampling methods.
    Epopa PS; Millogo AA; Collins CM; North AR; Benedict MQ; Tripet F; OʼLoughlin S; Dabiré RK; Ouédraogo GA; Diabaté A
    Parasit Vectors; 2020 Oct; 13(1):516. PubMed ID: 33059722
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wild populations of malaria vectors can mate both inside and outside human dwellings.
    Nambunga IH; Msugupakulya BJ; Hape EE; Mshani IH; Kahamba NF; Mkandawile G; Mabula DM; Njalambaha RM; Kaindoa EW; Muyaga LL; Hermy MRG; Tripet F; Ferguson HM; Ngowo HS; Okumu FO
    Parasit Vectors; 2021 Oct; 14(1):514. PubMed ID: 34620227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insights into factors sustaining persistence of high malaria transmission in forested areas of sub-Saharan Africa: the case of Mvoua, South Cameroon.
    Mieguim Ngninpogni D; Ndo C; Ntonga Akono P; Nguemo A; Nguepi A; Metitsi DR; Tombi J; Awono-Ambene P; Bilong Bilong CF
    Parasit Vectors; 2021 Jan; 14(1):2. PubMed ID: 33388082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.