BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 29116058)

  • 1. A line fiducial method for geometric calibration of cone-beam CT systems with diverse scan trajectories.
    Jacobson MW; Ketcha MD; Capostagno S; Martin A; Uneri A; Goerres J; De Silva T; Reaungamornrat S; Han R; Manbachi A; Stayman JW; Vogt S; Kleinszig G; Siewerdsen JH
    Phys Med Biol; 2018 Jan; 63(2):025030. PubMed ID: 29116058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A nonconvex model-based combined geometric calibration scheme for micro cone-beam CT with irregular trajectories.
    Li G; Chen X; You C; Huang X; Deng Z; Luo S
    Med Phys; 2023 May; 50(5):2759-2774. PubMed ID: 36718546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Geometric Calibration Using Line Fiducials for Cone-Beam CT with General, Non-Circular Source-Detector Trajectories.
    Jacobson MW; Ketcha M; Uneri A; Goerres J; De Silva T; Reaungamornrat S; Vogt S; Kleinszig G; Siewerdsen JH
    Proc SPIE Int Soc Opt Eng; 2017 Mar; 10132():. PubMed ID: 28989218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of CT cone-beam geometry using a novel method insensitive to phantom fabrication inaccuracy: implications for isocenter localization accuracy.
    Ford JC; Zheng D; Williamson JF
    Med Phys; 2011 Jun; 38(6):2829-40. PubMed ID: 21815358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accurate technique for complete geometric calibration of cone-beam computed tomography systems.
    Cho Y; Moseley DJ; Siewerdsen JH; Jaffray DA
    Med Phys; 2005 Apr; 32(4):968-83. PubMed ID: 15895580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fully automatic online geometric calibration for non-circular cone-beam CT orbits using fiducials with unknown placement.
    Ma YQ; Reynolds T; Ehtiati T; Weiss C; Hong K; Theodore N; Gang GJ; Stayman JW
    Med Phys; 2024 May; 51(5):3245-3264. PubMed ID: 38573172
    [TBL] [Abstract][Full Text] [Related]  

  • 7. C-arm orbits for metal artifact avoidance (MAA) in cone-beam CT.
    Wu P; Sheth N; Sisniega A; Uneri A; Han R; Vijayan R; Vagdargi P; Kreher B; Kunze H; Kleinszig G; Vogt S; Lo SF; Theodore N; Siewerdsen JH
    Phys Med Biol; 2020 Aug; 65(16):165012. PubMed ID: 32428891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Auto calibration of a cone-beam-CT.
    Gross D; Heil U; Schulze R; Schoemer E; Schwanecke U
    Med Phys; 2012 Oct; 39(10):5959-70. PubMed ID: 23039634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-calibration of cone-beam CT geometry using 3D-2D image registration.
    Ouadah S; Stayman JW; Gang GJ; Ehtiati T; Siewerdsen JH
    Phys Med Biol; 2016 Apr; 61(7):2613-32. PubMed ID: 26961687
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Geometric calibration of a mobile C-arm for intraoperative cone-beam CT.
    Daly MJ; Siewerdsen JH; Cho YB; Jaffray DA; Irish JC
    Med Phys; 2008 May; 35(5):2124-36. PubMed ID: 18561688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Geometry calibration method for a cone-beam CT system.
    Yang H; Kang K; Xing Y
    Med Phys; 2017 May; 44(5):1692-1706. PubMed ID: 28206667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robust methods for automatic image-to-world registration in cone-beam CT interventional guidance.
    Dang H; Otake Y; Schafer S; Stayman JW; Kleinszig G; Siewerdsen JH
    Med Phys; 2012 Oct; 39(10):6484-98. PubMed ID: 23039683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Line-based iterative geometric calibration method for a tomosynthesis system.
    Choi CJ; Vent TL; Acciavatti RJ; Maidment ADA
    Med Phys; 2024 Apr; 51(4):2444-2460. PubMed ID: 38394613
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization for customized trajectories in cone beam computed tomography.
    Hatamikia S; Biguri A; Kronreif G; Kettenbach J; Russ T; Furtado H; Shiyam Sundar LK; Buschmann M; Unger E; Figl M; Georg D; Birkfellner W
    Med Phys; 2020 Oct; 47(10):4786-4799. PubMed ID: 32679623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic image-to-world registration based on x-ray projections in cone-beam CT-guided interventions.
    Hamming NM; Daly MJ; Irish JC; Siewerdsen JH
    Med Phys; 2009 May; 36(5):1800-12. PubMed ID: 19544799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel calibration method incorporating nonlinear optimization and ball-bearing markers for cone-beam CT with a parameterized trajectory.
    Li G; Luo S; You C; Getzin M; Zheng L; Wang G; Gu N
    Med Phys; 2019 Jan; 46(1):152-164. PubMed ID: 30414272
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Practical geometric calibration for helical cone-beam industrial computed tomography.
    Zhang F; Yan B; Li L; Xi X; Jiang H
    J Xray Sci Technol; 2014; 22(1):19-35. PubMed ID: 24463383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An empirical method for geometric calibration of a photon counting detector-based cone beam CT system.
    Ghani MU; Makeev A; Manus JA; Glick SJ; Ghammraoui B
    J Xray Sci Technol; 2023; 31(5):865-877. PubMed ID: 37424488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A generic geometric calibration method for tomographic imaging systems with flat-panel detectors--a detailed implementation guide.
    Li X; Da Z; Liu B
    Med Phys; 2010 Jul; 37(7):3844-54. PubMed ID: 20831092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct determination of cone-beam geometric parameters using the helical phantom.
    Xu M; Zhang C; Liu X; Li D
    Phys Med Biol; 2014 Oct; 59(19):5667-90. PubMed ID: 25198790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.