These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 29116095)

  • 21. Feedback Cooling of a Room Temperature Mechanical Oscillator close to its Motional Ground State.
    Guo J; Norte R; Gröblacher S
    Phys Rev Lett; 2019 Nov; 123(22):223602. PubMed ID: 31868423
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optomechanics with silicon nanowires by harnessing confined electromagnetic modes.
    Ramos D; Gil-Santos E; Pini V; Llorens JM; Fernández-Regúlez M; San Paulo Á; Calleja M; Tamayo J
    Nano Lett; 2012 Feb; 12(2):932-7. PubMed ID: 22268657
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Double-passage ground-state cooling induced by quantum interference in the hybrid optomechanical system.
    Li L; Luo RH; Liu L; Zhang S; Zhang JQ
    Sci Rep; 2018 Sep; 8(1):14276. PubMed ID: 30250233
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hybrid Integration of Silicon Photonic Devices on Lithium Niobate for Optomechanical Wavelength Conversion.
    Marinković I; Drimmer M; Hensen B; Gröblacher S
    Nano Lett; 2021 Jan; 21(1):529-535. PubMed ID: 33393311
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High-sensitivity optical monitoring of a micromechanical resonator with a quantum-limited optomechanical sensor.
    Arcizet O; Cohadon PF; Briant T; Pinard M; Heidmann A; Mackowski JM; Michel C; Pinard L; Français O; Rousseau L
    Phys Rev Lett; 2006 Sep; 97(13):133601. PubMed ID: 17026032
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chip-scale cavity optomechanics in lithium niobate.
    Jiang WC; Lin Q
    Sci Rep; 2016 Nov; 6():36920. PubMed ID: 27841301
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gallium Phosphide as a Piezoelectric Platform for Quantum Optomechanics.
    Stockill R; Forsch M; Beaudoin G; Pantzas K; Sagnes I; Braive R; Gröblacher S
    Phys Rev Lett; 2019 Oct; 123(16):163602. PubMed ID: 31702356
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Solid-state laser refrigeration of a composite semiconductor Yb:YLiF
    Pant A; Xia X; Davis EJ; Pauzauskie PJ
    Nat Commun; 2020 Jun; 11(1):3235. PubMed ID: 32576820
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dual-comb optomechanical spectroscopy.
    Ren X; Pan J; Yan M; Sheng J; Yang C; Zhang Q; Ma H; Wen Z; Huang K; Wu H; Zeng H
    Nat Commun; 2023 Aug; 14(1):5037. PubMed ID: 37596269
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Resonant Optomechanics with a Vibrating Carbon Nanotube and a Radio-Frequency Cavity.
    Ares N; Pei T; Mavalankar A; Mergenthaler M; Warner JH; Briggs GA; Laird EA
    Phys Rev Lett; 2016 Oct; 117(17):170801. PubMed ID: 27824476
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optomechanical photon shuttling between photonic cavities.
    Li H; Li M
    Nat Nanotechnol; 2014 Nov; 9(11):913-9. PubMed ID: 25240675
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Brillouin Optomechanics in Coupled Silicon Microcavities.
    Espinel YA; Santos FG; Luiz GO; Alegre TP; Wiederhecker GS
    Sci Rep; 2017 Mar; 7():43423. PubMed ID: 28262814
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optomechanics with cavity polaritons: dissipative coupling and unconventional bistability.
    Kyriienko O; Liew TC; Shelykh IA
    Phys Rev Lett; 2014 Feb; 112(7):076402. PubMed ID: 24579620
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantum-limited amplification and parametric instability in the reversed dissipation regime of cavity optomechanics.
    Nunnenkamp A; Sudhir V; Feofanov AK; Roulet A; Kippenberg TJ
    Phys Rev Lett; 2014 Jul; 113(2):023604. PubMed ID: 25062181
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ground-state cooling of an oscillator in a hybrid atom-optomechanical system.
    Yi Z; Li GX; Wu SP; Yang YP
    Opt Express; 2014 Aug; 22(17):20060-75. PubMed ID: 25321216
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ground state cooling of an optomechanical resonator assisted by a Λ-type atom.
    Zhang S; Zhang JQ; Zhang J; Wu CW; Wu W; Chen PX
    Opt Express; 2014 Nov; 22(23):28118-31. PubMed ID: 25402052
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantum capacitance mediated carbon nanotube optomechanics.
    Blien S; Steger P; Hüttner N; Graaf R; Hüttel AK
    Nat Commun; 2020 Apr; 11(1):1636. PubMed ID: 32242140
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cooling and control of a cavity optoelectromechanical system.
    Lee KH; McRae TG; Harris GI; Knittel J; Bowen WP
    Phys Rev Lett; 2010 Mar; 104(12):123604. PubMed ID: 20366533
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nonlinear quantum optomechanics via individual intrinsic two-level defects.
    Ramos T; Sudhir V; Stannigel K; Zoller P; Kippenberg TJ
    Phys Rev Lett; 2013 May; 110(19):193602. PubMed ID: 23705706
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cooling of mechanical resonator in a hybrid intracavity squeezing optomechanical system.
    Liao Q; Zhou L; Wang X; Liu Y
    Opt Express; 2022 Oct; 30(21):38776-38788. PubMed ID: 36258435
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.