These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 29116123)

  • 1. Self-jumping Mechanism of Melting Frost on Superhydrophobic Surfaces.
    Liu X; Chen H; Zhao Z; Wang Y; Liu H; Zhang D
    Sci Rep; 2017 Nov; 7(1):14722. PubMed ID: 29116123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Frost Self-Removal Mechanism during Defrosting on Vertical Superhydrophobic Surfaces: Peeling Off or Jumping Off.
    Chu F; Wen D; Wu X
    Langmuir; 2018 Dec; 34(48):14562-14569. PubMed ID: 30360621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic Defrosting on Scalable Superhydrophobic Surfaces.
    Murphy KR; McClintic WT; Lester KC; Collier CP; Boreyko JB
    ACS Appl Mater Interfaces; 2017 Jul; 9(28):24308-24317. PubMed ID: 28653826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic Melting of Freezing Droplets on Ultraslippery Superhydrophobic Surfaces.
    Chu F; Wu X; Wang L
    ACS Appl Mater Interfaces; 2017 Mar; 9(9):8420-8425. PubMed ID: 28222256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sprayable superhydrophobic nano-chains coating with continuous self-jumping of dew and melting frost.
    Wang S; Zhang W; Yu X; Liang C; Zhang Y
    Sci Rep; 2017 Jan; 7():40300. PubMed ID: 28074938
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Delayed Frost Growth on Nanoporous Microstructured Surfaces Utilizing Jumping and Sweeping Condensates.
    Mohammadian B; Annavarapu RK; Raiyan A; Nemani SK; Kim S; Wang M; Sojoudi H
    Langmuir; 2020 Jun; 36(24):6635-6650. PubMed ID: 32418428
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic defrosting on nanostructured superhydrophobic surfaces.
    Boreyko JB; Srijanto BR; Nguyen TD; Vega C; Fuentes-Cabrera M; Collier CP
    Langmuir; 2013 Jul; 29(30):9516-24. PubMed ID: 23822157
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simple approach to superhydrophobic nanostructured Al for practical antifrosting application based on enhanced self-propelled jumping droplets.
    Kim A; Lee C; Kim H; Kim J
    ACS Appl Mater Interfaces; 2015 Apr; 7(13):7206-13. PubMed ID: 25782028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrophilic Slippery Surface Promotes Efficient Defrosting.
    Yang S; Li W; Song Y; Ying Y; Wen R; Du B; Jin Y; Wang Z; Ma X
    Langmuir; 2021 Oct; 37(40):11931-11938. PubMed ID: 34570495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Competing Effects between Condensation and Self-Removal of Water Droplets Determine Antifrosting Performance of Superhydrophobic Surfaces.
    Zhao G; Zou G; Wang W; Geng R; Yan X; He Z; Liu L; Zhou X; Lv J; Wang J
    ACS Appl Mater Interfaces; 2020 Feb; 12(6):7805-7814. PubMed ID: 31972085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Meltwater Evolution during Defrosting on Superhydrophobic Surfaces.
    Chu F; Wu X; Wang L
    ACS Appl Mater Interfaces; 2018 Jan; 10(1):1415-1421. PubMed ID: 29220152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Delayed frost growth on jumping-drop superhydrophobic surfaces.
    Boreyko JB; Collier CP
    ACS Nano; 2013 Feb; 7(2):1618-27. PubMed ID: 23286736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frosting Behavior of Superhydrophobic Nanoarrays under Ultralow Temperature.
    Zhang W; Wang S; Xiao Z; Yu X; Liang C; Zhang Y
    Langmuir; 2017 Sep; 33(36):8891-8898. PubMed ID: 28829603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Breaking Droplet Jumping Energy Conversion Limits with Superhydrophobic Microgrooves.
    Peng Q; Yan X; Li J; Li L; Cha H; Ding Y; Dang C; Jia L; Miljkovic N
    Langmuir; 2020 Aug; 36(32):9510-9522. PubMed ID: 32689802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combating Frosting with Joule-Heated Liquid-Infused Superhydrophobic Coatings.
    Elsharkawy M; Tortorella D; Kapatral S; Megaridis CM
    Langmuir; 2016 May; 32(17):4278-88. PubMed ID: 27021948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultimate jumping of coalesced droplets on superhydrophobic surfaces.
    Yuan Z; Gao S; Hu Z; Dai L; Hou H; Chu F; Wu X
    J Colloid Interface Sci; 2021 Apr; 587():429-436. PubMed ID: 33383432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Energy-effective frost-free coatings based on superhydrophobic aligned nanocones.
    Xu Q; Li J; Tian J; Zhu J; Gao X
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):8976-80. PubMed ID: 24912381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hierarchical Superhydrophobic Surfaces with Micropatterned Nanowire Arrays for High-Efficiency Jumping Droplet Condensation.
    Wen R; Xu S; Zhao D; Lee YC; Ma X; Yang R
    ACS Appl Mater Interfaces; 2017 Dec; 9(51):44911-44921. PubMed ID: 29214806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep Learning Enabled Comprehensive Evaluation of Jumping-Droplet Condensation and Frosting.
    Chen L; Shi D; Kang X; Ma C; Zheng Q
    ACS Appl Mater Interfaces; 2024 May; 16(19):25473-25482. PubMed ID: 38693061
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental study on frost-formation characteristics on cold surface of arched copper sample.
    Chen T; Cong Q; Jin J; Choy KL
    PLoS One; 2018; 13(12):e0208721. PubMed ID: 30533064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.