These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 29116265)
1. The internal structure of PMETAC brush/gold nanoparticle composites: a neutron and X-ray reflectivity study. Kesal D; Christau S; Trapp M; Krause P; von Klitzing R Phys Chem Chem Phys; 2017 Nov; 19(45):30636-30646. PubMed ID: 29116265 [TBL] [Abstract][Full Text] [Related]
2. Uptake of pH-Sensitive Gold Nanoparticles in Strong Polyelectrolyte Brushes. Kesal D; Christau S; Krause P; Möller T; Von Klitzing R Polymers (Basel); 2016 Apr; 8(4):. PubMed ID: 30979224 [TBL] [Abstract][Full Text] [Related]
3. Making strong polyelectrolyte brushes pH-sensitive by incorporation of gold nanoparticles. Boyaciyan D; Krause P; von Klitzing R Soft Matter; 2018 May; 14(20):4029-4039. PubMed ID: 29670976 [TBL] [Abstract][Full Text] [Related]
4. Gold nanoparticle distribution in polyelectrolyte brushes loaded at different pH conditions. Boyaciyan D; Braun L; Löhmann O; Silvi L; Schneck E; von Klitzing R J Chem Phys; 2018 Oct; 149(16):163322. PubMed ID: 30384703 [TBL] [Abstract][Full Text] [Related]
5. Brush/gold nanoparticle hybrids: effect of grafting density on the particle uptake and distribution within weak polyelectrolyte brushes. Christau S; Möller T; Yenice Z; Genzer J; von Klitzing R Langmuir; 2014 Nov; 30(43):13033-41. PubMed ID: 25275215 [TBL] [Abstract][Full Text] [Related]
6. Selective adsorption of functionalized nanoparticles to patterned polymer brush surfaces and its probing with an optical trap. Steinbach A; Paust T; Pluntke M; Marti O; Volkmer D Chemphyschem; 2013 Oct; 14(15):3523-31. PubMed ID: 24105927 [TBL] [Abstract][Full Text] [Related]
7. Effect of Salt Concentration on the pH Responses of Strong and Weak Polyelectrolyte Brushes. Zhang J; Kou R; Liu G Langmuir; 2017 Jul; 33(27):6838-6845. PubMed ID: 28628336 [TBL] [Abstract][Full Text] [Related]
8. In vivo toxicological evaluation of polymer brush engineered nanoceria: impact of brush charge. Catalán J; Fascineli ML; Politakos N; Hartikainen M; Garcia MP; Cáceres-Vélez PR; Moreno C; Silva SWD; Morais PC; Norppa H; Moya SE; Azevedo RB Nanotoxicology; 2019 Apr; 13(3):305-325. PubMed ID: 30582398 [TBL] [Abstract][Full Text] [Related]
9. Polymer brush guided formation of thin gold and palladium/gold bimetallic films. Paripovic D; Klok HA ACS Appl Mater Interfaces; 2011 Mar; 3(3):910-7. PubMed ID: 21381641 [TBL] [Abstract][Full Text] [Related]
10. The relationship between charge density and polyelectrolyte brush profile using simultaneous neutron reflectivity and in situ attenuated total internal reflection FTIR. Topham PD; Glidle A; Toolan DT; Weir MP; Skoda MW; Barker R; Howse JR Langmuir; 2013 May; 29(20):6068-76. PubMed ID: 23607484 [TBL] [Abstract][Full Text] [Related]
11. Reversible electrochemical switching of polyelectrolyte brush surface energy using electroactive counterions. Spruijt E; Choi EY; Huck WT Langmuir; 2008 Oct; 24(19):11253-60. PubMed ID: 18778088 [TBL] [Abstract][Full Text] [Related]
12. pH-Mediated Size-Selective Adsorption of Gold Nanoparticles on Diblock Copolymer Brushes. Kim YC; Composto RJ; Winey KI ACS Nano; 2023 May; 17(10):9224-9234. PubMed ID: 37134256 [TBL] [Abstract][Full Text] [Related]
13. Neutron reflectivity study of the swollen structure of polyzwitterion and polyeletrolyte brushes in aqueous solution. Kobayashi M; Ishihara K; Takahara A J Biomater Sci Polym Ed; 2014; 25(14-15):1673-86. PubMed ID: 25178564 [TBL] [Abstract][Full Text] [Related]
14. Probing pH-responsive interactions between polymer brushes and hydrogels by neutron reflectivity. Sudre G; Hourdet D; Creton C; Cousin F; Tran Y Langmuir; 2014 Aug; 30(32):9700-6. PubMed ID: 25099624 [TBL] [Abstract][Full Text] [Related]
15. Synthesis and swelling behavior of pH-responsive polybase brushes. Sanjuan S; Perrin P; Pantoustier N; Tran Y Langmuir; 2007 May; 23(10):5769-78. PubMed ID: 17425342 [TBL] [Abstract][Full Text] [Related]
16. A neutron reflectivity study of surfactant self-assembly in weak polyelectrolyte brushes at the sapphire-water interface. Moglianetti M; Webster JR; Edmondson S; Armes SP; Titmuss S Langmuir; 2011 Apr; 27(8):4489-96. PubMed ID: 21413747 [TBL] [Abstract][Full Text] [Related]
17. pH-responsive SERS substrates based on AgNP-polyMETAC composites on patterned self-assembled monolayers. Wang L; Wei P; Stumpf S; Schubert US; Hoeppener S Nanotechnology; 2020 Nov; 31(46):465604. PubMed ID: 32841206 [TBL] [Abstract][Full Text] [Related]
18. Mechanism of nanoparticle actuation by responsive polymer brushes: from reconfigurable composite surfaces to plasmonic effects. Roiter Y; Minko I; Nykypanchuk D; Tokarev I; Minko S Nanoscale; 2012 Jan; 4(1):284-92. PubMed ID: 22081128 [TBL] [Abstract][Full Text] [Related]
19. Reversible modulation of the redox activity in conducting polymer nanofilms induced by hydrophobic collapse of a surface-grafted polyelectrolyte. Fenoy GE; Giussi JM; von Bilderling C; Maza EM; Pietrasanta LI; Knoll W; Marmisollé WA; Azzaroni O J Colloid Interface Sci; 2018 May; 518():92-101. PubMed ID: 29448230 [TBL] [Abstract][Full Text] [Related]
20. Structure and collapse of a surface-grown strong polyelectrolyte brush on sapphire. Dunlop IE; Thomas RK; Titmus S; Osborne V; Edmondson S; Huck WT; Klein J Langmuir; 2012 Feb; 28(6):3187-93. PubMed ID: 22292571 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]