BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 29116401)

  • 41. The major protein of guayule rubber particles is a cytochrome P450. Characterization based on cDNA cloning and spectroscopic analysis of the solubilized enzyme and its reaction products.
    Pan Z; Durst F; Werck-Reichhart D; Gardner HW; Camara B; Cornish K; Backhaus RA
    J Biol Chem; 1995 Apr; 270(15):8487-94. PubMed ID: 7721745
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Microstructure of Purified Rubber Particles.
    Wood DF; Cornish K
    Int J Plant Sci; 2000 May; 161(3):435-445. PubMed ID: 10817979
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Histochemical techniques to localize rubber in guayule (Parthenium argentatum Gray).
    Jayabalan M; Shah JJ
    Stain Technol; 1986 Sep; 61(5):303-8. PubMed ID: 2431520
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Morphophysiological Characterisation of Guayule (
    Di Baccio D; Lorenzi A; Scartazza A; Rosellini I; Franchi E; Barbafieri M
    Plants (Basel); 2024 Jan; 13(3):. PubMed ID: 38337911
    [TBL] [Abstract][Full Text] [Related]  

  • 45. In vitro propagation of guayule (Parthenium argentatum) - a rubber yielding shrub.
    Dhar AC; Kavi Kishor PB; Rao AM
    Plant Cell Rep; 1989 Dec; 8(8):489-92. PubMed ID: 24233536
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Incorporation of deuterium-labelled analogs of isopentenyl diphosphate for the elucidation of the stereochemistry of rubber biosynthesis.
    Scholte AA; Vederas JC
    Org Biomol Chem; 2006 Feb; 4(4):730-42. PubMed ID: 16467948
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cycloartane- and Lanostane-Type Triterpenoids from the Resin of
    Xu YM; Madasu C; Liu MX; Wijeratne EMK; Dierig D; White B; Molnár I; Gunatilaka AAL
    ACS Omega; 2021 Jun; 6(23):15486-15498. PubMed ID: 34151127
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Characterization of rubber particles and rubber chain elongation in Taraxacum koksaghyz.
    Schmidt T; Lenders M; Hillebrand A; van Deenen N; Munt O; Reichelt R; Eisenreich W; Fischer R; Prüfer D; Gronover CS
    BMC Biochem; 2010 Feb; 11():11. PubMed ID: 20170509
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Novel Mechanisms Underlying Rubber Accumulation and Programmed Cell Death in Laticiferous Canals of
    Zhou Y; Li G; Han G; Mao S; Yang L; Wang Y
    Plants (Basel); 2023 Oct; 12(19):. PubMed ID: 37836237
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Bioactive Compounds from Leaves and Twigs of Guayule Grown in a Mediterranean Environment.
    Piluzza G; Campesi G; Molinu MG; Re GA; Sulas L
    Plants (Basel); 2020 Apr; 9(4):. PubMed ID: 32252364
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Histochemical studies on the distribution and accumulation of trans-polyisoprene in the rubber-producing plant Eucommia ulmoides.
    Ma XF; Yao XF; Chi ZZ; Zhu MQ
    Int J Biol Macromol; 2024 Jun; 270(Pt 1):132405. PubMed ID: 38754661
    [TBL] [Abstract][Full Text] [Related]  

  • 52. CONCERNING THE FUNCTION OF RUBBER HYDROCARBON (CAOUTCHOUC) IN THE GUAYULE PLANT, PARTHENIUM ARGENTATUM A. GRAY.
    Traub HP
    Plant Physiol; 1946 Oct; 21(4):425-44. PubMed ID: 16654058
    [No Abstract]   [Full Text] [Related]  

  • 53. Initiation of rubber biosynthesis: In vitro comparisons of benzophenone-modified diphosphate analogues in three rubber-producing species.
    Xie W; McMahan CM; Degraw AJ; Distefano MD; Cornish K; Whalen MC; Shintani DK
    Phytochemistry; 2008 Oct; 69(14):2539-45. PubMed ID: 18799172
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Advances in Genome Sequencing and Natural Rubber Biosynthesis in Rubber-Producing Plants.
    Tan Y; Cao J; Tang C; Liu K
    Curr Issues Mol Biol; 2023 Nov; 45(12):9342-9353. PubMed ID: 38132431
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Comparative analysis of the complete sequence of the plastid genome of Parthenium argentatum and identification of DNA barcodes to differentiate Parthenium species and lines.
    Kumar S; Hahn FM; McMahan CM; Cornish K; Whalen MC
    BMC Plant Biol; 2009 Nov; 9():131. PubMed ID: 19917140
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Natural rubber biosynthesis in plants, the rubber transferase complex, and metabolic engineering progress and prospects.
    Cherian S; Ryu SB; Cornish K
    Plant Biotechnol J; 2019 Nov; 17(11):2041-2061. PubMed ID: 31150158
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Alternative sources of natural rubber.
    Mooibroek H; Cornish K
    Appl Microbiol Biotechnol; 2000 Apr; 53(4):355-65. PubMed ID: 10803889
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Seasonal Variations in Rubber Biosynthesis, 3-Hydroxy-3-Methylglutaryl-Coenzyme A Reductase, and Rubber Transferase Activities in Parthenium argentatum in the Chihuahuan Desert.
    Ji W; Benedict CR; Foster MA
    Plant Physiol; 1993 Oct; 103(2):535-542. PubMed ID: 12231959
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Rubber particles from four different species, examined by transmission electron microscopy and electron-paramagnetic-resonance spin labeling, are found to consist of a homogeneous rubber core enclosed by a contiguous, monolayer biomembrane.
    Cornish K; Wood DF; Windle JJ
    Planta; 1999 Nov; 210(1):85-96. PubMed ID: 10592036
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The formation and accumulation of protein-networks by physical interactions in the rapid occlusion of laticifer cells in rubber tree undergoing successive mechanical wounding.
    Shi M; Li Y; Deng S; Wang D; Chen Y; Yang S; Wu J; Tian WM
    BMC Plant Biol; 2019 Jan; 19(1):8. PubMed ID: 30616545
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.