These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 29116737)

  • 1. Osteoinduction by Foamed and 3D-Printed Calcium Phosphate Scaffolds: Effect of Nanostructure and Pore Architecture.
    Barba A; Diez-Escudero A; Maazouz Y; Rappe K; Espanol M; Montufar EB; Bonany M; Sadowska JM; Guillem-Marti J; Öhman-Mägi C; Persson C; Manzanares MC; Franch J; Ginebra MP
    ACS Appl Mater Interfaces; 2017 Dec; 9(48):41722-41736. PubMed ID: 29116737
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Osteogenesis by foamed and 3D-printed nanostructured calcium phosphate scaffolds: Effect of pore architecture.
    Barba A; Maazouz Y; Diez-Escudero A; Rappe K; Espanol M; Montufar EB; Öhman-Mägi C; Persson C; Fontecha P; Manzanares MC; Franch J; Ginebra MP
    Acta Biomater; 2018 Oct; 79():135-147. PubMed ID: 30195084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomimetic versus sintered macroporous calcium phosphate scaffolds enhanced bone regeneration and human mesenchymal stromal cell engraftment in calvarial defects.
    Brennan MÁ; Monahan DS; Brulin B; Gallinetti S; Humbert P; Tringides C; Canal C; Ginebra MP; Layrolle P
    Acta Biomater; 2021 Nov; 135():689-704. PubMed ID: 34520883
    [TBL] [Abstract][Full Text] [Related]  

  • 4.
    Sadowska JM; Guillem-Marti J; Montufar EB; Espanol M; Ginebra MP
    Tissue Eng Part A; 2017 Dec; 23(23-24):1297-1309. PubMed ID: 28107811
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D microenvironment as essential element for osteoinduction by biomaterials.
    Habibovic P; Yuan H; van der Valk CM; Meijer G; van Blitterswijk CA; de Groot K
    Biomaterials; 2005 Jun; 26(17):3565-75. PubMed ID: 15621247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of Biomimicry in the Design of Osteoinductive Bone Substitutes: Nanoscale Matters.
    Barba A; Diez-Escudero A; Espanol M; Bonany M; Sadowska JM; Guillem-Marti J; Öhman-Mägi C; Persson C; Manzanares MC; Franch J; Ginebra MP
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):8818-8830. PubMed ID: 30740968
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D printing of hierarchical porous biomimetic hydroxyapatite scaffolds: Adding concavities to the convex filaments.
    Konka J; Buxadera-Palomero J; Espanol M; Ginebra MP
    Acta Biomater; 2021 Oct; 134():744-759. PubMed ID: 34358699
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of platelet-rich plasma on osteogenic differentiation of mesenchymal stem cells and ectopic bone formation in calcium phosphate ceramics.
    Kasten P; Vogel J; Luginbühl R; Niemeyer P; Weiss S; Schneider S; Kramer M; Leo A; Richter W
    Cells Tissues Organs; 2006; 183(2):68-79. PubMed ID: 17053323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accelerated hardening of nanotextured 3D-plotted self-setting calcium phosphate inks.
    Raymond S; Maazouz Y; Montufar EB; Perez RA; González B; Konka J; Kaiser J; Ginebra MP
    Acta Biomater; 2018 Jul; 75():451-462. PubMed ID: 29842972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrothermal processing of 3D-printed calcium phosphate scaffolds enhances bone formation in vivo: a comparison with biomimetic treatment.
    Raymond Y; Bonany M; Lehmann C; Thorel E; Benítez R; Franch J; Espanol M; Solé-Martí X; Manzanares MC; Canal C; Ginebra MP
    Acta Biomater; 2021 Nov; 135():671-688. PubMed ID: 34496283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication and biological evaluation of 3D-printed calcium phosphate ceramic scaffolds with distinct macroporous geometries through digital light processing technology.
    Wang J; Tang Y; Cao Q; Wu Y; Wang Y; Yuan B; Li X; Zhou Y; Chen X; Zhu X; Tu C; Zhang X
    Regen Biomater; 2022; 9():rbac005. PubMed ID: 35668922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of platelet-rich plasma on the in vitro proliferation and osteogenic differentiation of human mesenchymal stem cells on distinct calcium phosphate scaffolds: the specific surface area makes a difference.
    Kasten P; Vogel J; Beyen I; Weiss S; Niemeyer P; Leo A; Lüginbuhl R
    J Biomater Appl; 2008 Sep; 23(2):169-88. PubMed ID: 18632770
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biocompatibility and osteogenicity of degradable Ca-deficient hydroxyapatite scaffolds from calcium phosphate cement for bone tissue engineering.
    Guo H; Su J; Wei J; Kong H; Liu C
    Acta Biomater; 2009 Jan; 5(1):268-78. PubMed ID: 18722167
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative Study between Laser Light Stereo-Lithography 3D-Printed and Traditionally Sintered Biphasic Calcium Phosphate Scaffolds by an Integrated Morphological, Morphometric and Mechanical Analysis.
    Mangano C; Mangano F; Gobbi L; Admakin O; Iketani S; Giuliani A
    Int J Mol Sci; 2019 Jun; 20(13):. PubMed ID: 31247936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro response of mesenchymal stem cells to biomimetic hydroxyapatite substrates: A new strategy to assess the effect of ion exchange.
    Sadowska JM; Guillem-Marti J; Espanol M; Stähli C; Döbelin N; Ginebra MP
    Acta Biomater; 2018 Aug; 76():319-332. PubMed ID: 29933107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Platelet-rich plasma improves expansion of human mesenchymal stem cells and retains differentiation capacity and in vivo bone formation in calcium phosphate ceramics.
    Vogel JP; Szalay K; Geiger F; Kramer M; Richter W; Kasten P
    Platelets; 2006 Nov; 17(7):462-9. PubMed ID: 17074722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of integrin αvβ3 in biphasic calcium phosphate ceramics mediated M2 Macrophage polarization and the resultant osteoinduction.
    Liu H; Wu Q; Liu S; Liu L; He Z; Liu Y; Sun Y; Liu X; Luo E
    Biomaterials; 2024 Jan; 304():122406. PubMed ID: 38096618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D printing calcium phosphate ceramics with high osteoinductivity through pore architecture optimization.
    Wu Y; Liu P; Feng C; Cao Q; Xu X; Liu Y; Li X; Zhu X; Zhang X
    Acta Biomater; 2024 Jul; ():. PubMed ID: 39002921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of low temperature macroporous hydroxyapatite scaffolds by foaming and hydrolysis of an alpha-TCP paste.
    Almirall A; Larrecq G; Delgado JA; Martínez S; Planell JA; Ginebra MP
    Biomaterials; 2004 Aug; 25(17):3671-80. PubMed ID: 15020142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stabilization of Ca-deficient hydroxyapatite in biphasic calcium phosphate ceramics by adding alginate to enhance their biological performances.
    Li X; Deng Y; Wang M; Chen X; Xiao Y; Zhang X
    J Mater Chem B; 2018 Jan; 6(1):84-97. PubMed ID: 32254196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.