BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 29116780)

  • 1. Bioactive Asarone-Derived Phenylpropanoids from the Rhizome of Acorus tatarinowii Schott.
    Gao E; Zhou ZQ; Zou J; Yu Y; Feng XL; Chen GD; He RR; Yao XS; Gao H
    J Nat Prod; 2017 Nov; 80(11):2923-2929. PubMed ID: 29116780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chiral resolution, absolute configuration, and bioactivity of a new racemic asarone derivative from the rhizome of Acorus tatarinowii.
    Gao E; Ren FF; Zou J; Yu Y; Fan HX; Zhou ZQ; Chen GD; He RR; Yao XS; Gao H
    Fitoterapia; 2017 Oct; 122():7-10. PubMed ID: 28811187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. (±)-Acortatarinowins A-F, Norlignan, Neolignan, and Lignan Enantiomers from Acorus tatarinowii.
    Lu Y; Xue Y; Liu J; Yao G; Li D; Sun B; Zhang J; Liu Y; Qi C; Xiang M; Luo Z; Du G; Zhang Y
    J Nat Prod; 2015 Sep; 78(9):2205-14. PubMed ID: 26305406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compounds from Acorus tatarinowii: determination of absolute configuration by quantum computations and cAMP regulation activity.
    Tong XG; Wu GS; Huang CG; Lu Q; Wang YH; Long CL; Luo HR; Zhu HJ; Cheng YX
    J Nat Prod; 2010 Jun; 73(6):1160-3. PubMed ID: 20476749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The asarone-derived phenylpropanoids from the rhizome of Acorus calamus var. angustatus Besser.
    Bai Y; Sun Y; Xie J; Li B; Bai Y; Zhang D; Liang J; Xiao C; Zhong A; Cao Y; Zheng X
    Phytochemistry; 2020 Feb; 170():112212. PubMed ID: 31785552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antioxidant Lignans and Neolignans from Acorus tatarinowii.
    Lu Y; Xue Y; Chen S; Zhu H; Zhang J; Li XN; Wang J; Liu J; Qi C; Du G; Zhang Y
    Sci Rep; 2016 Mar; 6():22909. PubMed ID: 26961724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An efficient combination of supercritical fluid extraction and high-speed counter-current chromatography to extract and purify (E)- and (Z)-diastereomers of α-asarone and β-asarone from Acorus tatarinowii Schott.
    Wang D; Geng Y; Fang L; Shu X; Liu J; Wang X; Huang L
    J Sep Sci; 2011 Dec; 34(23):3339-43. PubMed ID: 22038778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Chemical constituents from rhizomes of Acorus tatarinowii].
    Ni G; Yu DQ
    Zhongguo Zhong Yao Za Zhi; 2013 Feb; 38(4):569-73. PubMed ID: 23713285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New steroids from Anemarrhena asphodeloides rhizome and their α-glucosidase inhibitory activity.
    Khang PV; Phuong DM; Ma L
    J Asian Nat Prod Res; 2017 May; 19(5):468-473. PubMed ID: 27658357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GC-MS method for determination and pharmacokinetic study of four phenylpropanoids in rat plasma after oral administration of the essential oil of Acorus tatarinowii Schott rhizomes.
    Wang Z; Wang Q; Yang B; Li J; Yang C; Meng Y; Kuang H
    J Ethnopharmacol; 2014 Sep; 155(2):1134-40. PubMed ID: 25046827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phenylpropanoid glycosides from the fruit of Lycium barbarum L. and their bioactivity.
    Li QW; Zhang R; Zhou ZQ; Sun WY; Fan HX; Wang Y; Xiao J; So KF; Yao XS; Gao H
    Phytochemistry; 2019 Aug; 164():60-66. PubMed ID: 31096077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lignans from the Roots of Taxus wallichiana and Their α-Glucosidase Inhibitory Activities.
    Dang PH; Nguyen HX; Nguyen HHT; Vo TD; Le TH; Phan THN; Nguyen MTT; Nguyen NT
    J Nat Prod; 2017 Jun; 80(6):1876-1882. PubMed ID: 28581744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential antioxidant, α-glucosidase, butyrylcholinesterase and acetylcholinesterase inhibitory activities of major constituents isolated from
    Al Garni HA; El-Halawany AM; Koshak AE; Malebari AM; Alzain AA; Mohamed GA; Ibrahim SRM; El-Sayed NS; Abdallah HM
    SAR QSAR Environ Res; 2024 May; 35(5):391-410. PubMed ID: 38769919
    [No Abstract]   [Full Text] [Related]  

  • 14. Glucokinase-activating sesquinlignans from the rhizomes of Acorus tatarinowii Schott.
    Ni G; Shen ZF; Lu Y; Wang YH; Tang YB; Chen RY; Hao ZY; Yu DQ
    J Org Chem; 2011 Apr; 76(7):2056-61. PubMed ID: 21366319
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro acetylcholinesterase inhibitory activity of the essential oil from Acorus calamus and its main constituents.
    Mukherjee PK; Kumar V; Mal M; Houghton PJ
    Planta Med; 2007 Mar; 73(3):283-5. PubMed ID: 17286241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioactive phenylpropanoid derivatives from the fruits of Lycium ruthenicum Murr.
    Zhao SS; Li S; Luo ZH; Zhou ZQ; Li N; Wang Y; Yao XS; Gao H
    Bioorg Chem; 2021 Nov; 116():105307. PubMed ID: 34482167
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new lignan and a new alkaloid, and α-glucosidase inhibitory compounds from the grains of Echinochloa utilis Ohwi & Yabuno.
    Nguyen TT; Nguyen DH; Zhao BT; Le DD; Choi DH; Kim YH; Nguyen TH; Woo MH
    Bioorg Chem; 2017 Oct; 74():221-227. PubMed ID: 28865293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Asarones from Acori Tatarinowii Rhizoma stimulate expression and secretion of neurotrophic factors in cultured astrocytes.
    Lam KYC; Wu QY; Hu WH; Yao P; Wang HY; Dong TTX; Tsim KWK
    Neurosci Lett; 2019 Aug; 707():134308. PubMed ID: 31153972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antioxidant and alpha-glucosidase inhibitory activities of isoflavonoids from the rhizomes of Ficus tikoua Bur.
    Fu G; Li W; Huang X; Zhang R; Tian K; Hou S; Li Y
    Nat Prod Res; 2018 Feb; 32(4):399-405. PubMed ID: 28423925
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Lynn NH; Linn TZ; Yanmei C; Shimozu Y; Taniguchi S; Hatano T
    Biosci Biotechnol Biochem; 2019 May; 83(5):892-900. PubMed ID: 30696362
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.