These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 29117518)

  • 1. Protein Sequence and Membrane Lipid Roles in the Activation Kinetics of Bovine and Human Rhodopsins.
    Szundi I; Funatogawa C; Guo Y; Yan ECY; Kliger DS
    Biophys J; 2017 Nov; 113(9):1934-1944. PubMed ID: 29117518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Comparison between the Photoactivation Kinetics of Human and Bovine Rhodopsins.
    Funatogawa C; Szundi I; Kliger DS
    Biochemistry; 2016 Dec; 55(50):7005-7013. PubMed ID: 27935291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rhodopsin in nanodiscs has native membrane-like photointermediates.
    Tsukamoto H; Szundi I; Lewis JW; Farrens DL; Kliger DS
    Biochemistry; 2011 Jun; 50(22):5086-91. PubMed ID: 21539361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two intermediates appear on the lumirhodopsin time scale after rhodopsin photoexcitation.
    Szundi I; Lewis JW; Kliger DS
    Biochemistry; 2003 May; 42(17):5091-8. PubMed ID: 12718552
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monitoring the conformational changes of photoactivated rhodopsin from microseconds to seconds by transient fluorescence spectroscopy.
    Hoersch D; Otto H; Wallat I; Heyn MP
    Biochemistry; 2008 Nov; 47(44):11518-27. PubMed ID: 18847221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chimeric microbial rhodopsins containing the third cytoplasmic loop of bovine rhodopsin.
    Nakatsuma A; Yamashita T; Sasaki K; Kawanabe A; Inoue K; Furutani Y; Shichida Y; Kandori H
    Biophys J; 2011 Apr; 100(8):1874-82. PubMed ID: 21504723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microsecond time-resolved circular dichroism of rhodopsin photointermediates.
    Thomas YG; Szundi I; Lewis JW; Kliger DS
    Biochemistry; 2009 Dec; 48(51):12283-9. PubMed ID: 19905009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two different forms of metarhodopsin II: Schiff base deprotonation precedes proton uptake and signaling state.
    Arnis S; Hofmann KP
    Proc Natl Acad Sci U S A; 1993 Aug; 90(16):7849-53. PubMed ID: 8356093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipid headgroup and acyl chain composition modulate the MI-MII equilibrium of rhodopsin in recombinant membranes.
    Gibson NJ; Brown MF
    Biochemistry; 1993 Mar; 32(9):2438-54. PubMed ID: 8443184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time-resolved rapid-scan Fourier transform infrared difference spectroscopy on a noncyclic photosystem: rhodopsin photointermediates from Lumi to Meta II.
    Lüdeke S; Lórenz Fonfría VA; Siebert F; Vogel R
    Biopolymers; 2006 Oct; 83(2):159-69. PubMed ID: 16721790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Activation Pathway of Human Rhodopsin in Comparison to Bovine Rhodopsin.
    Kazmin R; Rose A; Szczepek M; Elgeti M; Ritter E; Piechnick R; Hofmann KP; Scheerer P; Hildebrand PW; Bartl FJ
    J Biol Chem; 2015 Aug; 290(33):20117-27. PubMed ID: 26105054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chimeric proton-pumping rhodopsins containing the cytoplasmic loop of bovine rhodopsin.
    Sasaki K; Yamashita T; Yoshida K; Inoue K; Shichida Y; Kandori H
    PLoS One; 2014; 9(3):e91323. PubMed ID: 24621599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-pH form of bovine rhodopsin.
    Koutalos Y
    Biophys J; 1992 Jan; 61(1):272-5. PubMed ID: 1540695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-resolved photointermediate changes in rhodopsin glutamic acid 181 mutants.
    Lewis JW; Szundi I; Kazmi MA; Sakmar TP; Kliger DS
    Biochemistry; 2004 Oct; 43(39):12614-21. PubMed ID: 15449951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The magnitude of the light-induced conformational change in different rhodopsins correlates with their ability to activate G proteins.
    Tsukamoto H; Farrens DL; Koyanagi M; Terakita A
    J Biol Chem; 2009 Jul; 284(31):20676-83. PubMed ID: 19497849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rhodopsin activation affects the environment of specific neighboring phospholipids: an FTIR spectroscopic study.
    Isele J; Sakmar TP; Siebert F
    Biophys J; 2000 Dec; 79(6):3063-71. PubMed ID: 11106612
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conservation of molecular interactions stabilizing bovine and mouse rhodopsin.
    Kawamura S; Colozo AT; Müller DJ; Park PS
    Biochemistry; 2010 Dec; 49(49):10412-20. PubMed ID: 21038881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proton movement and photointermediate kinetics in rhodopsin mutants.
    Lewis JW; Szundi I; Kazmi MA; Sakmar TP; Kliger DS
    Biochemistry; 2006 May; 45(17):5430-9. PubMed ID: 16634624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of Arrestin on the Photodecay of Bovine Rhodopsin.
    Chatterjee D; Eckert CE; Slavov C; Saxena K; Fürtig B; Sanders CR; Gurevich VV; Wachtveitl J; Schwalbe H
    Angew Chem Int Ed Engl; 2015 Nov; 54(46):13555-60. PubMed ID: 26383645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequential rearrangement of interhelical networks upon rhodopsin activation in membranes: the Meta II(a) conformational substate.
    Zaitseva E; Brown MF; Vogel R
    J Am Chem Soc; 2010 Apr; 132(13):4815-21. PubMed ID: 20230054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.