BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 29117520)

  • 21. The Structural Basis of the Farnesylated and Methylated KRas4B Interaction with Calmodulin.
    Jang H; Banerjee A; Marcus K; Makowski L; Mattos C; Gaponenko V; Nussinov R
    Structure; 2019 Nov; 27(11):1647-1659.e4. PubMed ID: 31495533
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regulation of a Coupled MARCKS-PI3K Lipid Kinase Circuit by Calmodulin: Single-Molecule Analysis of a Membrane-Bound Signaling Module.
    Ziemba BP; Swisher GH; Masson G; Burke JE; Williams RL; Falke JJ
    Biochemistry; 2016 Nov; 55(46):6395-6405. PubMed ID: 27933776
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Activation of PI3Kα by physiological effectors and by oncogenic mutations: structural and dynamic effects.
    Gabelli SB; Echeverria I; Alexander M; Duong-Ly KC; Chaves-Moreira D; Brower ET; Vogelstein B; Amzel LM
    Biophys Rev; 2014 Mar; 6(1):89-95. PubMed ID: 25309634
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regulation of K-Ras4B Membrane Binding by Calmodulin.
    Sperlich B; Kapoor S; Waldmann H; Winter R; Weise K
    Biophys J; 2016 Jul; 111(1):113-22. PubMed ID: 27410739
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Membrane translocation of TRPC6 channels and endothelial migration are regulated by calmodulin and PI3 kinase activation.
    Chaudhuri P; Rosenbaum MA; Sinharoy P; Damron DS; Birnbaumer L; Graham LM
    Proc Natl Acad Sci U S A; 2016 Feb; 113(8):2110-5. PubMed ID: 26858457
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tyrosine phosphorylation of p85 relieves its inhibitory activity on phosphatidylinositol 3-kinase.
    Cuevas BD; Lu Y; Mao M; Zhang J; LaPushin R; Siminovitch K; Mills GB
    J Biol Chem; 2001 Jul; 276(29):27455-61. PubMed ID: 11337495
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dynamic steps in receptor tyrosine kinase mediated activation of class IA phosphoinositide 3-kinases (PI3K) captured by H/D exchange (HDX-MS).
    Burke JE; Williams RL
    Adv Biol Regul; 2013 Jan; 53(1):97-110. PubMed ID: 23194976
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Single-Molecule Study Reveals How Receptor and Ras Synergistically Activate PI3Kα and PIP
    Buckles TC; Ziemba BP; Masson GR; Williams RL; Falke JJ
    Biophys J; 2017 Dec; 113(11):2396-2405. PubMed ID: 29211993
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synergistic activation of a family of phosphoinositide 3-kinase via G-protein coupled and tyrosine kinase-related receptors.
    Katada T; Kurosu H; Okada T; Suzuki T; Tsujimoto N; Takasuga S; Kontani K; Hazeki O; Ui M
    Chem Phys Lipids; 1999 Apr; 98(1-2):79-86. PubMed ID: 10358930
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural insights into the activation mechanism of phosphoinositide 3-kinase alpha.
    Jani V; Sonavane U; Sawant S
    Comput Biol Chem; 2024 Feb; 108():107994. PubMed ID: 38043374
    [TBL] [Abstract][Full Text] [Related]  

  • 31. v-Crk activates the phosphoinositide 3-kinase/AKT pathway by utilizing focal adhesion kinase and H-Ras.
    Akagi T; Murata K; Shishido T; Hanafusa H
    Mol Cell Biol; 2002 Oct; 22(20):7015-23. PubMed ID: 12242282
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Binding of influenza A virus NS1 protein to the inter-SH2 domain of p85 suggests a novel mechanism for phosphoinositide 3-kinase activation.
    Hale BG; Batty IH; Downes CP; Randall RE
    J Biol Chem; 2008 Jan; 283(3):1372-1380. PubMed ID: 18029356
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structure of lipid kinase p110β/p85β elucidates an unusual SH2-domain-mediated inhibitory mechanism.
    Zhang X; Vadas O; Perisic O; Anderson KE; Clark J; Hawkins PT; Stephens LR; Williams RL
    Mol Cell; 2011 Mar; 41(5):567-78. PubMed ID: 21362552
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The hypervariable region of K-Ras4B is responsible for its specific interactions with calmodulin.
    Abraham SJ; Nolet RP; Calvert RJ; Anderson LM; Gaponenko V
    Biochemistry; 2009 Aug; 48(32):7575-83. PubMed ID: 19583261
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular interactions of the CTLA-4 cytoplasmic region with the phosphoinositide 3-kinase SH2 domains.
    Iiyama M; Numoto N; Ogawa S; Kuroda M; Morii H; Abe R; Ito N; Oda M
    Mol Immunol; 2021 Mar; 131():51-59. PubMed ID: 33386150
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biophysical and Structural Characterization of Novel RAS-Binding Domains (RBDs) of PI3Kα and PI3Kγ.
    Martinez NG; Thieker DF; Carey LM; Rasquinha JA; Kistler SK; Kuhlman BA; Campbell SL
    J Mol Biol; 2021 Apr; 433(8):166838. PubMed ID: 33539876
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The mechanism of PI3Kα activation at the atomic level.
    Zhang M; Jang H; Nussinov R
    Chem Sci; 2019 Mar; 10(12):3671-3680. PubMed ID: 30996962
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structure of the complex of calmodulin with the target sequence of calmodulin-dependent protein kinase I: studies of the kinase activation mechanism.
    Clapperton JA; Martin SR; Smerdon SJ; Gamblin SJ; Bayley PM
    Biochemistry; 2002 Dec; 41(50):14669-79. PubMed ID: 12475216
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interdomain cooperativity of calmodulin bound to melittin preferentially increases calcium affinity of sites I and II.
    Newman RA; Van Scyoc WS; Sorensen BR; Jaren OR; Shea MA
    Proteins; 2008 Jun; 71(4):1792-812. PubMed ID: 18175310
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regulation of protein tyrosine phosphatase 1C: opposing effects of the two src homology 2 domains.
    Pregel MJ; Shen SH; Storer AC
    Protein Eng; 1995 Dec; 8(12):1309-16. PubMed ID: 8869644
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.