These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 29117545)

  • 1. Resistance Is Futile: Targeting Mitochondrial Energetics and Metabolism to Overcome Drug Resistance in Cancer Treatment.
    Bosc C; Selak MA; Sarry JE
    Cell Metab; 2017 Nov; 26(5):705-707. PubMed ID: 29117545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting Oxidative Phosphorylation Reverses Drug Resistance in Cancer Cells by Blocking Autophagy Recycling.
    Lee JS; Lee H; Jang H; Woo SM; Park JB; Lee SH; Kang JH; Kim HY; Song J; Kim SY
    Cells; 2020 Sep; 9(9):. PubMed ID: 32883024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondria and cancer chemoresistance.
    Guerra F; Arbini AA; Moro L
    Biochim Biophys Acta Bioenerg; 2017 Aug; 1858(8):686-699. PubMed ID: 28161329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Promising strategy developed to target drug-resistant cancer cells.
    Thorne J
    Future Med Chem; 2014 Apr; 6(6):603. PubMed ID: 25028759
    [No Abstract]   [Full Text] [Related]  

  • 5. Targeting Mitochondrial Function to Treat Quiescent Tumor Cells in Solid Tumors.
    Zhang X; de Milito A; Olofsson MH; Gullbo J; D'Arcy P; Linder S
    Int J Mol Sci; 2015 Nov; 16(11):27313-26. PubMed ID: 26580606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Is reliance on mitochondrial respiration a "chink in the armor" of therapy-resistant cancer?
    Wolf DA
    Cancer Cell; 2014 Dec; 26(6):788-795. PubMed ID: 25490445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of targeting lonidamine liposomes that circumvent drug-resistant cancer by acting on mitochondrial signaling pathways.
    Li N; Zhang CX; Wang XX; Zhang L; Ma X; Zhou J; Ju RJ; Li XY; Zhao WY; Lu WL
    Biomaterials; 2013 Apr; 34(13):3366-80. PubMed ID: 23410681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Restoration of mitochondria function as a target for cancer therapy.
    Bhat TA; Kumar S; Chaudhary AK; Yadav N; Chandra D
    Drug Discov Today; 2015 May; 20(5):635-43. PubMed ID: 25766095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cancer cell metabolism: Rewiring the mitochondrial hub.
    Oliveira GL; Coelho AR; Marques R; Oliveira PJ
    Biochim Biophys Acta Mol Basis Dis; 2021 Feb; 1867(2):166016. PubMed ID: 33246010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of Mitochondrial Metabolic Reprogramming and Oxidative Stress to Overcome Chemoresistance in Cancer.
    Avolio R; Matassa DS; Criscuolo D; Landriscina M; Esposito F
    Biomolecules; 2020 Jan; 10(1):. PubMed ID: 31947673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidative phosphorylation as a target to arrest malignant neoplasias.
    Rodríguez-Enríquez S; Gallardo-Pérez JC; Marín-Hernández A; Aguilar-Ponce JL; Mandujano-Tinoco EA; Meneses A; Moreno-Sánchez R
    Curr Med Chem; 2011; 18(21):3156-67. PubMed ID: 21671858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidative Stress and Reprogramming of Mitochondrial Function and Dynamics as Targets to Modulate Cancer Cell Behavior and Chemoresistance.
    Falone S; Lisanti MP; Domenicotti C
    Oxid Med Cell Longev; 2019; 2019():4647807. PubMed ID: 31915507
    [No Abstract]   [Full Text] [Related]  

  • 13. Chemotherapy-Resistant Human Acute Myeloid Leukemia Cells Are Not Enriched for Leukemic Stem Cells but Require Oxidative Metabolism.
    Farge T; Saland E; de Toni F; Aroua N; Hosseini M; Perry R; Bosc C; Sugita M; Stuani L; Fraisse M; Scotland S; Larrue C; Boutzen H; Féliu V; Nicolau-Travers ML; Cassant-Sourdy S; Broin N; David M; Serhan N; Sarry A; Tavitian S; Kaoma T; Vallar L; Iacovoni J; Linares LK; Montersino C; Castellano R; Griessinger E; Collette Y; Duchamp O; Barreira Y; Hirsch P; Palama T; Gales L; Delhommeau F; Garmy-Susini BH; Portais JC; Vergez F; Selak M; Danet-Desnoyers G; Carroll M; Récher C; Sarry JE
    Cancer Discov; 2017 Jul; 7(7):716-735. PubMed ID: 28416471
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drugging OXPHOS Dependency in Cancer.
    Cancer Discov; 2019 Aug; 9(8):OF10. PubMed ID: 31186236
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drug discovery strategies in the field of tumor energy metabolism: Limitations by metabolic flexibility and metabolic resistance to chemotherapy.
    Amoedo ND; Obre E; Rossignol R
    Biochim Biophys Acta Bioenerg; 2017 Aug; 1858(8):674-685. PubMed ID: 28213330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial metabolism: Inducer or therapeutic target in tumor immune-resistance?
    Kopecka J; Gazzano E; Castella B; Salaroglio IC; Mungo E; Massaia M; Riganti C
    Semin Cell Dev Biol; 2020 Feb; 98():80-89. PubMed ID: 31100351
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A selective mitochondrial-targeted chlorambucil with remarkable cytotoxicity in breast and pancreatic cancers.
    Millard M; Gallagher JD; Olenyuk BZ; Neamati N
    J Med Chem; 2013 Nov; 56(22):9170-9. PubMed ID: 24147900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation of mitochondrial oxidation by PDK2 inhibition reverses cisplatin resistance in head and neck cancer.
    Roh JL; Park JY; Kim EH; Jang HJ; Kwon M
    Cancer Lett; 2016 Feb; 371(1):20-9. PubMed ID: 26607904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Medicinal Chemistry Targeting Mitochondria: From New Vehicles and Pharmacophore Groups to Old Drugs with Mitochondrial Activity.
    Catalán M; Olmedo I; Faúndez J; Jara JA
    Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33217901
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting mitochondrial function for the treatment of breast cancer.
    Deus CM; Coelho AR; Serafim TL; Oliveira PJ
    Future Med Chem; 2014 Sep; 6(13):1499-513. PubMed ID: 25365234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.