These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 29117560)

  • 1. Timed Synaptic Inhibition Shapes NMDA Spikes, Influencing Local Dendritic Processing and Global I/O Properties of Cortical Neurons.
    Doron M; Chindemi G; Muller E; Markram H; Segev I
    Cell Rep; 2017 Nov; 21(6):1550-1561. PubMed ID: 29117560
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A model of NMDA receptor-mediated activity in dendrites of hippocampal CA1 pyramidal neurons.
    Pongrácz F; Poolos NP; Kocsis JD; Shepherd GM
    J Neurophysiol; 1992 Dec; 68(6):2248-59. PubMed ID: 1337105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of Neural Morphology and Input Distribution on Synaptic Processing by Global and Focal NMDA-Spikes.
    Poleg-Polsky A
    PLoS One; 2015; 10(10):e0140254. PubMed ID: 26460829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acetylcholine Boosts Dendritic NMDA Spikes in a CA3 Pyramidal Neuron Model.
    Humphries R; Mellor JR; O'Donnell C
    Neuroscience; 2022 May; 489():69-83. PubMed ID: 34780920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spike-timing-dependent synaptic plasticity depends on dendritic location.
    Froemke RC; Poo MM; Dan Y
    Nature; 2005 Mar; 434(7030):221-5. PubMed ID: 15759002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NMDA spikes in basal dendrites of cortical pyramidal neurons.
    Schiller J; Major G; Koester HJ; Schiller Y
    Nature; 2000 Mar; 404(6775):285-9. PubMed ID: 10749211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Burst control: Synaptic conditions for burst generation in cortical layer 5 pyramidal neurons.
    Leleo EG; Segev I
    PLoS Comput Biol; 2021 Nov; 17(11):e1009558. PubMed ID: 34727124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High synaptic threshold for dendritic NMDA spike generation in human layer 2/3 pyramidal neurons.
    Testa-Silva G; Rosier M; Honnuraiah S; Guzulaitis R; Megias AM; French C; King J; Drummond K; Palmer LM; Stuart GJ
    Cell Rep; 2022 Dec; 41(11):111787. PubMed ID: 36516769
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of cortical synaptic input on striatal neuronal dendritic arborization and sensitivity to excitotoxicity in corticostriatal coculture.
    Buren C; Tu G; Parsons MP; Sepers MD; Raymond LA
    J Neurophysiol; 2016 Aug; 116(2):380-90. PubMed ID: 27121581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Asymmetric Voltage Attenuation in Dendrites Can Enable Hierarchical Heterosynaptic Plasticity.
    Moldwin T; Kalmenson M; Segev I
    eNeuro; 2023 Jul; 10(7):. PubMed ID: 37414554
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dendritic NMDA spikes are necessary for timing-dependent associative LTP in CA3 pyramidal cells.
    Brandalise F; Carta S; Helmchen F; Lisman J; Gerber U
    Nat Commun; 2016 Nov; 7():13480. PubMed ID: 27848967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of calcium-activated potassium channels on NMDA spikes in cortical layer 5 pyramidal neurons.
    Bock T; Stuart GJ
    J Neurophysiol; 2016 Mar; 115(3):1740-8. PubMed ID: 26936985
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synaptic calcium transients in single spines indicate that NMDA receptors are not saturated.
    Mainen ZF; Malinow R; Svoboda K
    Nature; 1999 May; 399(6732):151-5. PubMed ID: 10335844
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The decade of the dendritic NMDA spike.
    Antic SD; Zhou WL; Moore AR; Short SM; Ikonomu KD
    J Neurosci Res; 2010 Nov; 88(14):2991-3001. PubMed ID: 20544831
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NMDA receptor triggered molecular cascade underlies compression-induced rapid dendritic spine plasticity in cortical neurons.
    Chen LJ; Wang YJ; Chen JR; Tseng GF
    Exp Neurol; 2015 Apr; 266():86-98. PubMed ID: 25708984
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dendritic Branch-constrained N-Methyl-d-Aspartate Receptor-mediated Spikes Drive Synaptic Plasticity in Hippocampal CA3 Pyramidal Cells.
    Brandalise F; Carta S; Leone R; Helmchen F; Holtmaat A; Gerber U
    Neuroscience; 2022 May; 489():57-68. PubMed ID: 34634424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NMDA receptor-dependent plasticity of granule cell spiking in the dentate gyrus of normal and epileptic rats.
    Lynch M; Sayin U; Golarai G; Sutula T
    J Neurophysiol; 2000 Dec; 84(6):2868-79. PubMed ID: 11110816
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synaptic integration in an excitable dendritic tree.
    Mel BW
    J Neurophysiol; 1993 Sep; 70(3):1086-101. PubMed ID: 8229160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of inhibition and triplets of excitatory spikes modulates the NMDA-R-mediated synaptic plasticity in a computational model of spike timing-dependent plasticity.
    Cutsuridis V
    Hippocampus; 2013 Jan; 23(1):75-86. PubMed ID: 22851353
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Location-dependent synaptic plasticity rules by dendritic spine cooperativity.
    Weber JP; Andrásfalvy BK; Polito M; Magó Á; Ujfalussy BB; Makara JK
    Nat Commun; 2016 Apr; 7():11380. PubMed ID: 27098773
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.