These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 29117581)

  • 1. Collective sparse symmetric non-negative matrix factorization for identifying overlapping communities in resting-state brain functional networks.
    Li X; Gan JQ; Wang H
    Neuroimage; 2018 Feb; 166():259-275. PubMed ID: 29117581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SPARK: Sparsity-based analysis of reliable k-hubness and overlapping network structure in brain functional connectivity.
    Lee K; Lina JM; Gotman J; Grova C
    Neuroimage; 2016 Jul; 134():434-449. PubMed ID: 27046111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomarkers Derived from Alterations in Overlapping Community Structure of Resting-state Brain Functional Networks for Detecting Alzheimer's Disease.
    Han H; Li X; Gan JQ; Yu H; Wang H;
    Neuroscience; 2022 Feb; 484():38-52. PubMed ID: 34973385
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overlapping brain Community detection using Bayesian tensor decomposition.
    Mirzaei S; Soltanian-Zadeh H
    J Neurosci Methods; 2019 Apr; 318():47-55. PubMed ID: 30831137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How restful is it with all that noise? Comparison of Interleaved silent steady state (ISSS) and conventional imaging in resting-state fMRI.
    Andoh J; Ferreira M; Leppert IR; Matsushita R; Pike B; Zatorre RJ
    Neuroimage; 2017 Feb; 147():726-735. PubMed ID: 27902936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intrinsic overlapping modular organization of human brain functional networks revealed by a multiobjective evolutionary algorithm.
    Lin Y; Ma J; Gu Y; Yang S; Li LMW; Dai Z
    Neuroimage; 2018 Nov; 181():430-445. PubMed ID: 30005918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low rank and sparsity constrained method for identifying overlapping functional brain networks.
    Aggarwal P; Gupta A
    PLoS One; 2018; 13(11):e0208068. PubMed ID: 30485369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual Temporal and Spatial Sparse Representation for Inferring Group-Wise Brain Networks From Resting-State fMRI Dataset.
    Gong J; Liu X; Liu T; Zhou J; Sun G; Tian J
    IEEE Trans Biomed Eng; 2018 May; 65(5):1035-1048. PubMed ID: 28796604
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinctive time-lagged resting-state networks revealed by simultaneous EEG-fMRI.
    Feige B; Spiegelhalder K; Kiemen A; Bosch OG; Tebartz van Elst L; Hennig J; Seifritz E; Riemann D
    Neuroimage; 2017 Jan; 145(Pt A):1-10. PubMed ID: 27637863
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LEICA: Laplacian eigenmaps for group ICA decomposition of fMRI data.
    Liu C; JaJa J; Pessoa L
    Neuroimage; 2018 Apr; 169():363-373. PubMed ID: 29246846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complementary contributions of concurrent EEG and fMRI connectivity for predicting structural connectivity.
    Wirsich J; Ridley B; Besson P; Jirsa V; BĂ©nar C; Ranjeva JP; Guye M
    Neuroimage; 2017 Nov; 161():251-260. PubMed ID: 28842386
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resting state networks in empirical and simulated dynamic functional connectivity.
    Glomb K; Ponce-Alvarez A; Gilson M; Ritter P; Deco G
    Neuroimage; 2017 Oct; 159():388-402. PubMed ID: 28782678
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resting network is composed of more than one neural pattern: an fMRI study.
    Lee TW; Northoff G; Wu YT
    Neuroscience; 2014 Aug; 274():198-208. PubMed ID: 24881572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifying Sparse Connectivity Patterns in the brain using resting-state fMRI.
    Eavani H; Satterthwaite TD; Filipovych R; Gur RE; Gur RC; Davatzikos C
    Neuroimage; 2015 Jan; 105():286-99. PubMed ID: 25284301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large-scale sparse functional networks from resting state fMRI.
    Li H; Satterthwaite TD; Fan Y
    Neuroimage; 2017 Aug; 156():1-13. PubMed ID: 28483721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inter-subject phase synchronization for exploratory analysis of task-fMRI.
    Bolt T; Nomi JS; Vij SG; Chang C; Uddin LQ
    Neuroimage; 2018 Aug; 176():477-488. PubMed ID: 29654878
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Introducing co-activation pattern metrics to quantify spontaneous brain network dynamics.
    Chen JE; Chang C; Greicius MD; Glover GH
    Neuroimage; 2015 May; 111():476-88. PubMed ID: 25662866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Beyond modularity: Fine-scale mechanisms and rules for brain network reconfiguration.
    Khambhati AN; Mattar MG; Wymbs NF; Grafton ST; Bassett DS
    Neuroimage; 2018 Feb; 166():385-399. PubMed ID: 29138087
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Susceptibility to everyday cognitive failure is reflected in functional network interactions in the resting brain.
    Bey K; Montag C; Reuter M; Weber B; Markett S
    Neuroimage; 2015 Nov; 121():1-9. PubMed ID: 26210814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuroaging through the Lens of the Resting State Networks.
    Cieri F; Esposito R
    Biomed Res Int; 2018; 2018():5080981. PubMed ID: 29568755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.