BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 29117636)

  • 21. Host cell response and distinct gene expression profiles at different stages of Chlamydia trachomatis infection reveals stage-specific biomarkers of infection.
    Dzakah EE; Huang L; Xue Y; Wei S; Wang X; Chen H; Shui J; Kyei F; Rashid F; Zheng H; Yang B; Tang S
    BMC Microbiol; 2021 Jan; 21(1):3. PubMed ID: 33397284
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantitative live-cell PALM reveals nanoscopic Faa4 redistributions and dynamics on lipid droplets during metabolic transitions of yeast.
    Adhikari S; Moscatelli J; Puchner EM
    Mol Biol Cell; 2021 Aug; 32(17):1565-1578. PubMed ID: 34161133
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spastin tethers lipid droplets to peroxisomes and directs fatty acid trafficking through ESCRT-III.
    Chang CL; Weigel AV; Ioannou MS; Pasolli HA; Xu CS; Peale DR; Shtengel G; Freeman M; Hess HF; Blackstone C; Lippincott-Schwartz J
    J Cell Biol; 2019 Aug; 218(8):2583-2599. PubMed ID: 31227594
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Actin recruitment to the Chlamydia inclusion is spatiotemporally regulated by a mechanism that requires host and bacterial factors.
    Chin E; Kirker K; Zuck M; James G; Hybiske K
    PLoS One; 2012; 7(10):e46949. PubMed ID: 23071671
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Absence of Specific Chlamydia trachomatis Inclusion Membrane Proteins Triggers Premature Inclusion Membrane Lysis and Host Cell Death.
    Weber MM; Lam JL; Dooley CA; Noriea NF; Hansen BT; Hoyt FH; Carmody AB; Sturdevant GL; Hackstadt T
    Cell Rep; 2017 May; 19(7):1406-1417. PubMed ID: 28514660
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chlamydia trachomatis recruits protein kinase C during infection.
    Sah P; Nelson NH; Shaw JH; Lutter EI
    Pathog Dis; 2019 Aug; 77(6):. PubMed ID: 31647538
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inhibition of fusion of Chlamydia trachomatis inclusions at 32 degrees C correlates with restricted export of IncA.
    Fields KA; Fischer E; Hackstadt T
    Infect Immun; 2002 Jul; 70(7):3816-23. PubMed ID: 12065525
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Saturated fatty acid in the phospholipid monolayer contributes to the formation of large lipid droplets.
    Arisawa K; Mitsudome H; Yoshida K; Sugimoto S; Ishikawa T; Fujiwara Y; Ichi I
    Biochem Biophys Res Commun; 2016 Nov; 480(4):641-647. PubMed ID: 27983976
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Coinfection Model to Evaluate Chlamydia Inc Protein Interactions.
    Ende R; Derré I
    Methods Mol Biol; 2019; 2042():205-218. PubMed ID: 31385278
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lipid droplets formation in human endothelial cells in response to polyunsaturated fatty acids and 1-methyl-nicotinamide (MNA); confocal Raman imaging and fluorescence microscopy studies.
    Majzner K; Chlopicki S; Baranska M
    J Biophotonics; 2016 Apr; 9(4):396-405. PubMed ID: 25966299
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Actin and intermediate filaments stabilize the Chlamydia trachomatis vacuole by forming dynamic structural scaffolds.
    Kumar Y; Valdivia RH
    Cell Host Microbe; 2008 Aug; 4(2):159-69. PubMed ID: 18692775
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Broad recruitment of mGBP family members to Chlamydia trachomatis inclusions.
    Lindenberg V; Mölleken K; Kravets E; Stallmann S; Hegemann JH; Degrandi D; Pfeffer K
    PLoS One; 2017; 12(9):e0185273. PubMed ID: 28945814
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fusion of Chlamydia trachomatis-containing inclusions is inhibited at low temperatures and requires bacterial protein synthesis.
    Van Ooij C; Homola E; Kincaid E; Engel J
    Infect Immun; 1998 Nov; 66(11):5364-71. PubMed ID: 9784545
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of host fatty acid-binding protein and fatty acid uptake on growth of Chlamydia trachomatis L2.
    Wang G; Burczynski F; Anderson J; Zhong G
    Microbiology (Reading); 2007 Jun; 153(Pt 6):1935-1939. PubMed ID: 17526850
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The intracellular bacteria Chlamydia hijack peroxisomes and utilize their enzymatic capacity to produce bacteria-specific phospholipids.
    Boncompain G; Müller C; Meas-Yedid V; Schmitt-Kopplin P; Lazarow PB; Subtil A
    PLoS One; 2014; 9(1):e86196. PubMed ID: 24465954
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lipid Droplets: A Significant but Understudied Contributor of Host⁻Bacterial Interactions.
    Libbing CL; McDevitt AR; Azcueta RP; Ahila A; Mulye M
    Cells; 2019 Apr; 8(4):. PubMed ID: 30991653
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cerebellar ataxia disease-associated Snx14 promotes lipid droplet growth at ER-droplet contacts.
    Datta S; Liu Y; Hariri H; Bowerman J; Henne WM
    J Cell Biol; 2019 Apr; 218(4):1335-1351. PubMed ID: 30765438
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tapping lipid droplets: A rich fat diet of intracellular bacterial pathogens.
    Hüsler D; Stauffer P; Hilbi H
    Mol Microbiol; 2023 Aug; 120(2):194-209. PubMed ID: 37429596
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chlamydia trachomatis type III secretion: evidence for a functional apparatus during early-cycle development.
    Fields KA; Mead DJ; Dooley CA; Hackstadt T
    Mol Microbiol; 2003 May; 48(3):671-83. PubMed ID: 12694613
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reprogramming of host glutamine metabolism during Chlamydia trachomatis infection and its key role in peptidoglycan synthesis.
    Rajeeve K; Vollmuth N; Janaki-Raman S; Wulff TF; Baluapuri A; Dejure FR; Huber C; Fink J; Schmalhofer M; Schmitz W; Sivadasan R; Eilers M; Wolf E; Eisenreich W; Schulze A; Seibel J; Rudel T
    Nat Microbiol; 2020 Nov; 5(11):1390-1402. PubMed ID: 32747796
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.