BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

441 related articles for article (PubMed ID: 29117682)

  • 1. Constant pH Molecular Dynamics Reveals How Proton Release Drives the Conformational Transition of a Transmembrane Efflux Pump.
    Yue Z; Chen W; Zgurskaya HI; Shen J
    J Chem Theory Comput; 2017 Dec; 13(12):6405-6414. PubMed ID: 29117682
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coarse-grained simulations of conformational changes in the multidrug efflux transporter AcrB.
    Jewel Y; Liu J; Dutta P
    Mol Biosyst; 2017 Sep; 13(10):2006-2014. PubMed ID: 28770910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The AcrB efflux pump: conformational cycling and peristalsis lead to multidrug resistance.
    Seeger MA; Diederichs K; Eicher T; Brandstätter L; Schiefner A; Verrey F; Pos KM
    Curr Drug Targets; 2008 Sep; 9(9):729-49. PubMed ID: 18781920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computer simulations suggest direct and stable tip to tip interaction between the outer membrane channel TolC and the isolated docking domain of the multidrug RND efflux transporter AcrB.
    Schmidt TH; Raunest M; Fischer N; Reith D; Kandt C
    Biochim Biophys Acta; 2016 Jul; 1858(7 Pt A):1419-26. PubMed ID: 27045078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elastic network model-based normal mode analysis reveals the conformational couplings in the tripartite AcrAB-TolC multidrug efflux complex.
    Wang B; Weng J; Fan K; Wang W
    Proteins; 2011 Oct; 79(10):2936-45. PubMed ID: 21905116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substrate-dependent transport mechanism in AcrB of multidrug resistant bacteria.
    Jewel Y; Van Dinh Q; Liu J; Dutta P
    Proteins; 2020 Jul; 88(7):853-864. PubMed ID: 31998988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AcrB-AcrA Fusion Proteins That Act as Multidrug Efflux Transporters.
    Hayashi K; Nakashima R; Sakurai K; Kitagawa K; Yamasaki S; Nishino K; Yamaguchi A
    J Bacteriol; 2016 Jan; 198(2):332-42. PubMed ID: 26527645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Drug transport mechanism of the AcrB efflux pump.
    Pos KM
    Biochim Biophys Acta; 2009 May; 1794(5):782-93. PubMed ID: 19166984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural asymmetry of AcrB trimer suggests a peristaltic pump mechanism.
    Seeger MA; Schiefner A; Eicher T; Verrey F; Diederichs K; Pos KM
    Science; 2006 Sep; 313(5791):1295-8. PubMed ID: 16946072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional rotation induced by alternating protonation states in the multidrug transporter AcrB: all-atom molecular dynamics simulations.
    Yamane T; Murakami S; Ikeguchi M
    Biochemistry; 2013 Oct; 52(43):7648-58. PubMed ID: 24083838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of the AcrAB-TolC multidrug efflux pump.
    Du D; Wang Z; James NR; Voss JE; Klimont E; Ohene-Agyei T; Venter H; Chiu W; Luisi BF
    Nature; 2014 May; 509(7501):512-5. PubMed ID: 24747401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Threonine-978 in the transmembrane segment of the multidrug efflux pump AcrB of Escherichia coli is crucial for drug transport as a probable component of the proton relay network.
    Takatsuka Y; Nikaido H
    J Bacteriol; 2006 Oct; 188(20):7284-9. PubMed ID: 17015667
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water-mediated interactions enable smooth substrate transport in a bacterial efflux pump.
    Vargiu AV; Ramaswamy VK; Malvacio I; Malloci G; Kleinekathöfer U; Ruggerone P
    Biochim Biophys Acta Gen Subj; 2018 Apr; 1862(4):836-845. PubMed ID: 29339082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energetics and conformational pathways of functional rotation in the multidrug transporter AcrB.
    Matsunaga Y; Yamane T; Terada T; Moritsugu K; Fujisaki H; Murakami S; Ikeguchi M; Kidera A
    Elife; 2018 Mar; 7():. PubMed ID: 29506651
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ structure of the AcrAB-TolC efflux pump at subnanometer resolution.
    Chen M; Shi X; Yu Z; Fan G; Serysheva II; Baker ML; Luisi BF; Ludtke SJ; Wang Z
    Structure; 2022 Jan; 30(1):107-113.e3. PubMed ID: 34506732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular basis for inhibition of AcrB multidrug efflux pump by novel and powerful pyranopyridine derivatives.
    Sjuts H; Vargiu AV; Kwasny SM; Nguyen ST; Kim HS; Ding X; Ornik AR; Ruggerone P; Bowlin TL; Nikaido H; Pos KM; Opperman TJ
    Proc Natl Acad Sci U S A; 2016 Mar; 113(13):3509-14. PubMed ID: 26976576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The C-terminal domain of AcrA is essential for the assembly and function of the multidrug efflux pump AcrAB-TolC.
    Ge Q; Yamada Y; Zgurskaya H
    J Bacteriol; 2009 Jul; 191(13):4365-71. PubMed ID: 19411330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformation of the AcrB multidrug efflux pump in mutants of the putative proton relay pathway.
    Su CC; Li M; Gu R; Takatsuka Y; McDermott G; Nikaido H; Yu EW
    J Bacteriol; 2006 Oct; 188(20):7290-6. PubMed ID: 17015668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions underlying assembly of the Escherichia coli AcrAB-TolC multidrug efflux system.
    Touzé T; Eswaran J; Bokma E; Koronakis E; Hughes C; Koronakis V
    Mol Microbiol; 2004 Jul; 53(2):697-706. PubMed ID: 15228545
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupling of remote alternating-access transport mechanisms for protons and substrates in the multidrug efflux pump AcrB.
    Eicher T; Seeger MA; Anselmi C; Zhou W; Brandstätter L; Verrey F; Diederichs K; Faraldo-Gómez JD; Pos KM
    Elife; 2014 Sep; 3():. PubMed ID: 25248080
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.