These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 29117692)

  • 1. Delayed Slater determinant update algorithms for high efficiency quantum Monte Carlo.
    McDaniel T; D'Azevedo EF; Li YW; Wong K; Kent PRC
    J Chem Phys; 2017 Nov; 147(17):174107. PubMed ID: 29117692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum Monte Carlo with very large multideterminant wavefunctions.
    Scemama A; Applencourt T; Giner E; Caffarel M
    J Comput Chem; 2016 Jul; 37(20):1866-75. PubMed ID: 27302337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A fast and efficient algorithm for Slater determinant updates in quantum Monte Carlo simulations.
    Nukala PK; Kent PR
    J Chem Phys; 2009 May; 130(20):204105. PubMed ID: 19485435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phaseless Auxiliary-Field Quantum Monte Carlo on Graphical Processing Units.
    Shee J; Arthur EJ; Zhang S; Reichman DR; Friesner RA
    J Chem Theory Comput; 2018 Aug; 14(8):4109-4121. PubMed ID: 29897748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-orthogonal determinants in multi-Slater-Jastrow trial wave functions for fixed-node diffusion Monte Carlo.
    Pathak S; Wagner LK
    J Chem Phys; 2018 Dec; 149(23):234104. PubMed ID: 30579315
    [TBL] [Abstract][Full Text] [Related]  

  • 6. QMCPACK: an open source ab initio quantum Monte Carlo package for the electronic structure of atoms, molecules and solids.
    Kim J; Baczewski AT; Beaudet TD; Benali A; Bennett MC; Berrill MA; Blunt NS; Borda EJL; Casula M; Ceperley DM; Chiesa S; Clark BK; Clay RC; Delaney KT; Dewing M; Esler KP; Hao H; Heinonen O; Kent PRC; Krogel JT; Kylänpää I; Li YW; Lopez MG; Luo Y; Malone FD; Martin RM; Mathuriya A; McMinis J; Melton CA; Mitas L; Morales MA; Neuscamman E; Parker WD; Pineda Flores SD; Romero NA; Rubenstein BM; Shea JAR; Shin H; Shulenburger L; Tillack AF; Townsend JP; Tubman NM; Van Der Goetz B; Vincent JE; Yang DC; Yang Y; Zhang S; Zhao L
    J Phys Condens Matter; 2018 May; 30(19):195901. PubMed ID: 29582782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Approaching chemical accuracy with quantum Monte Carlo.
    Petruzielo FR; Toulouse J; Umrigar CJ
    J Chem Phys; 2012 Mar; 136(12):124116. PubMed ID: 22462844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of single particle orbital sets and configuration selection on multideterminant wavefunctions in quantum Monte Carlo.
    Clay RC; Morales MA
    J Chem Phys; 2015 Jun; 142(23):234103. PubMed ID: 26093546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TurboRVB: A many-body toolkit for ab initio electronic simulations by quantum Monte Carlo.
    Nakano K; Attaccalite C; Barborini M; Capriotti L; Casula M; Coccia E; Dagrada M; Genovese C; Luo Y; Mazzola G; Zen A; Sorella S
    J Chem Phys; 2020 May; 152(20):204121. PubMed ID: 32486669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GPGPU for orbital function evaluation with a new updating scheme.
    Uejima Y; Maezono R
    J Comput Chem; 2013 Jan; 34(2):83-94. PubMed ID: 22941835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Linear-scaling quantum Monte Carlo calculations.
    Williamson AJ; Hood RQ; Grossman JC
    Phys Rev Lett; 2001 Dec; 87(24):246406. PubMed ID: 11736525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative Monte Carlo efficiency by Monte Carlo analysis.
    Rubenstein BM; Gubernatis JE; Doll JD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 2):036701. PubMed ID: 21230207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient local energy evaluation for multi-Slater wave functions in orbital space quantum Monte Carlo.
    Mahajan A; Sharma S
    J Chem Phys; 2020 Nov; 153(19):194108. PubMed ID: 33218236
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simple formalism for efficient derivatives and multi-determinant expansions in quantum Monte Carlo.
    Filippi C; Assaraf R; Moroni S
    J Chem Phys; 2016 May; 144(19):194105. PubMed ID: 27208934
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accelerating Monte Carlo simulations of radiation therapy dose distributions using wavelet threshold de-noising.
    Deasy JO; Wickerhauser MV; Picard M
    Med Phys; 2002 Oct; 29(10):2366-73. PubMed ID: 12408311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-Jastrow trial wavefunctions for electronic structure calculations with quantum Monte Carlo.
    Bouabça T; Braïda B; Caffarel M
    J Chem Phys; 2010 Jul; 133(4):044111. PubMed ID: 20687637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Latent uncertainties of the precalculated track Monte Carlo method.
    Renaud MA; Roberge D; Seuntjens J
    Med Phys; 2015 Jan; 42(1):479-90. PubMed ID: 25563287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimum and efficient sampling for variational quantum Monte Carlo.
    Trail JR; Maezono R
    J Chem Phys; 2010 Nov; 133(17):174120. PubMed ID: 21054019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Valence-bond quantum Monte Carlo algorithms defined on trees.
    Deschner A; Sørensen ES
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):033304. PubMed ID: 25314561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.