These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 29117850)

  • 21. EM algorithms for fitting multistate cure models.
    Beesley LJ; Taylor JMG
    Biostatistics; 2019 Jul; 20(3):416-432. PubMed ID: 29584820
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A stochastic EM type algorithm for parameter estimation in models with continuous outcomes, under complex ascertainment.
    Grünewald M; Humphreys K; Hössjer O
    Int J Biostat; 2010; 6(1):Article 23. PubMed ID: 21969978
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Maximum-entropy expectation-maximization algorithm for image reconstruction and sensor field estimation.
    Hong H; Schonfeld D
    IEEE Trans Image Process; 2008 Jun; 17(6):897-907. PubMed ID: 18482885
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Likelihood-based inference for discretely observed birth-death-shift processes, with applications to evolution of mobile genetic elements.
    Xu J; Guttorp P; Kato-Maeda M; Minin VN
    Biometrics; 2015 Dec; 71(4):1009-21. PubMed ID: 26148963
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multistate models for the natural history of cancer progression.
    Cheung LC; Albert PS; Das S; Cook RJ
    Br J Cancer; 2022 Oct; 127(7):1279-1288. PubMed ID: 35821296
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Semi-Markov Arnason-Schwarz models.
    King R; Langrock R
    Biometrics; 2016 Jun; 72(2):619-28. PubMed ID: 26584064
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A stochastic self-organizing map for proximity data.
    Graepel T; Obermayer K
    Neural Comput; 1999 Jan; 11(1):139-55. PubMed ID: 9950727
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bayesian inference in a hidden stochastic two-compartment model for feline hematopoiesis.
    Golinelli D; Guttorp P; Abkowitz JA
    Math Med Biol; 2006 Sep; 23(3):153-72. PubMed ID: 16567362
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Noise properties of the EM algorithm: I. Theory.
    Barrett HH; Wilson DW; Tsui BM
    Phys Med Biol; 1994 May; 39(5):833-46. PubMed ID: 15552088
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A semi-Markov model for stroke with piecewise-constant hazards in the presence of left, right and interval censoring.
    Kapetanakis V; Matthews FE; van den Hout A
    Stat Med; 2013 Feb; 32(4):697-713. PubMed ID: 22903796
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Continuous time Markov chain approaches for analyzing transtheoretical models of health behavioral change: A case study and comparison of model estimations.
    Ma J; Chan W; Tilley BC
    Stat Methods Med Res; 2018 Feb; 27(2):593-607. PubMed ID: 27048681
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regularized continuous-time Markov Model via elastic net.
    Huang S; Hu C; Bell ML; Billheimer D; Guerra S; Roe D; Vasquez MM; Bedrick EJ
    Biometrics; 2018 Sep; 74(3):1045-1054. PubMed ID: 29534304
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An illness-death stochastic model in the analysis of longitudinal dementia data.
    Harezlak J; Gao S; Hui SL
    Stat Med; 2003 May; 22(9):1465-75. PubMed ID: 12704610
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Parameter estimation for alpha-GMM based on maximum likelihood criterion.
    Wu D
    Neural Comput; 2009 Jun; 21(6):1776-95. PubMed ID: 19018709
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A mixed model for two-state Markov processes under panel observation.
    Cook RJ
    Biometrics; 1999 Sep; 55(3):915-20. PubMed ID: 11315028
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bayesian inference for discretely observed continuous time multi-state models.
    Barone R; Tancredi A
    Stat Med; 2022 Aug; 41(19):3789-3803. PubMed ID: 35635068
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A state space approach for piecewise-linear recurrent neural networks for identifying computational dynamics from neural measurements.
    Durstewitz D
    PLoS Comput Biol; 2017 Jun; 13(6):e1005542. PubMed ID: 28574992
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Non-homogeneous Markov process models with informative observations with an application to Alzheimer's disease.
    Chen B; Zhou XH
    Biom J; 2011 May; 53(3):444-63. PubMed ID: 21491475
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Efficient algorithms for training the parameters of hidden Markov models using stochastic expectation maximization (EM) training and Viterbi training.
    Lam TY; Meyer IM
    Algorithms Mol Biol; 2010 Dec; 5():38. PubMed ID: 21143925
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of a Cohort Analytics Tool for Monitoring Progression Patterns in Cardiovascular Diseases: Advanced Stochastic Modeling Approach.
    Brahma A; Chatterjee S; Seal K; Fitzpatrick B; Tao Y
    JMIR Med Inform; 2024 Sep; 12():e59392. PubMed ID: 39316426
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.