These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 29118114)

  • 1. A chemo-mechano-biological formulation for the effects of biochemical alterations on arterial mechanics: the role of molecular transport and multiscale tissue remodelling.
    Marino M; Pontrelli G; Vairo G; Wriggers P
    J R Soc Interface; 2017 Nov; 14(136):. PubMed ID: 29118114
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel chemo-mechano-biological model of arterial tissue growth and remodelling.
    Aparício P; Thompson MS; Watton PN
    J Biomech; 2016 Aug; 49(12):2321-30. PubMed ID: 27184922
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unraveling the complexity of vascular tone regulation: a multiscale computational approach to integrating chemo-mechano-biological pathways with cardiovascular biomechanics.
    Marino M; Sauty B; Vairo G
    Biomech Model Mechanobiol; 2024 Mar; ():. PubMed ID: 38507180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechano-chemo-biological Computational Models for Arteries in Health, Disease and Healing: From Tissue Remodelling to Drug-eluting Devices.
    Marino M; Vairo G; Wriggers P
    Curr Pharm Des; 2021; 27(16):1904-1917. PubMed ID: 32723253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A homeostatic-driven turnover remodelling constitutive model for healing in soft tissues.
    Comellas E; Gasser TC; Bellomo FJ; Oller S
    J R Soc Interface; 2016 Mar; 13(116):. PubMed ID: 27009177
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complement C1q-induced activation of β-catenin signalling causes hypertensive arterial remodelling.
    Sumida T; Naito AT; Nomura S; Nakagawa A; Higo T; Hashimoto A; Okada K; Sakai T; Ito M; Yamaguchi T; Oka T; Akazawa H; Lee JK; Minamino T; Offermanns S; Noda T; Botto M; Kobayashi Y; Morita H; Manabe I; Nagai T; Shiojima I; Komuro I
    Nat Commun; 2015 Feb; 6():6241. PubMed ID: 25716000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A FSI computational framework for vascular physiopathology: A novel flow-tissue multiscale strategy.
    Bianchi D; Monaldo E; Gizzi A; Marino M; Filippi S; Vairo G
    Med Eng Phys; 2017 Sep; 47():25-37. PubMed ID: 28690045
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disruption of TGF-β signaling in smooth muscle cell prevents flow-induced vascular remodeling.
    Gao F; Chambon P; Tellides G; Kong W; Zhang X; Li W
    Biochem Biophys Res Commun; 2014 Nov; 454(1):245-50. PubMed ID: 25451249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiscale bio-chemo-mechanical model of intimal hyperplasia.
    Jansen J; Escriva X; Godeferd F; Feugier P
    Biomech Model Mechanobiol; 2022 Apr; 21(2):709-734. PubMed ID: 35092546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intracellular mechanisms involved in vascular remodelling of resistance arteries in hypertension: role of angiotensin II.
    Touyz RM
    Exp Physiol; 2005 Jul; 90(4):449-55. PubMed ID: 15890798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Disturbed Flow Promotes Arterial Stiffening Through Thrombospondin-1.
    Kim CW; Pokutta-Paskaleva A; Kumar S; Timmins LH; Morris AD; Kang DW; Dalal S; Chadid T; Kuo KM; Raykin J; Li H; Yanagisawa H; Gleason RL; Jo H; Brewster LP
    Circulation; 2017 Sep; 136(13):1217-1232. PubMed ID: 28778947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A critical role for Egr-1 during vascular remodelling in pulmonary arterial hypertension.
    Dickinson MG; Kowalski PS; Bartelds B; Borgdorff MA; van der Feen D; Sietsma H; Molema G; Kamps JA; Berger RM
    Cardiovasc Res; 2014 Sep; 103(4):573-84. PubMed ID: 25028387
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bio-Chemo-Mechanical Models of Vascular Mechanics.
    Kim J; Wagenseil JE
    Ann Biomed Eng; 2015 Jul; 43(7):1477-87. PubMed ID: 25465618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanobiological model of arterial growth and remodeling.
    Keshavarzian M; Meyer CA; Hayenga HN
    Biomech Model Mechanobiol; 2018 Feb; 17(1):87-101. PubMed ID: 28823079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The roles of interleukins in perfusion recovery after peripheral arterial disease.
    Chen L; Liu H; Yuan M; Lu W; Wang J; Wang T
    Biosci Rep; 2018 Feb; 38(1):. PubMed ID: 29358309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of microRNAs in arterial remodelling.
    Nazari-Jahantigh M; Wei Y; Schober A
    Thromb Haemost; 2012 Apr; 107(4):611-8. PubMed ID: 22371089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mass transport in arteries and the localization of atherosclerosis.
    Tarbell JM
    Annu Rev Biomed Eng; 2003; 5():79-118. PubMed ID: 12651738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational model of collagen turnover in carotid arteries during hypertension.
    Sáez P; Peña E; Tarbell JM; Martínez MA
    Int J Numer Method Biomed Eng; 2015 Feb; 31(2):. PubMed ID: 25643608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Matrix metalloproteinases in periodontal tissue remodelling.
    Sodek J; Overall CM
    Matrix Suppl; 1992; 1():352-62. PubMed ID: 1480060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of transmural heterogeneities on arterial adaptation: application to aneurysm formation.
    Schmid H; Watton PN; Maurer MM; Wimmer J; Winkler P; Wang YK; Röhrle O; Itskov M
    Biomech Model Mechanobiol; 2010 Jun; 9(3):295-315. PubMed ID: 19943177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.