BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 29118132)

  • 1. Physical trade-offs shape the evolution of buoyancy control in sharks.
    Gleiss AC; Potvin J; Goldbogen JA
    Proc Biol Sci; 2017 Nov; 284(1866):. PubMed ID: 29118132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unexpected Positive Buoyancy in Deep Sea Sharks, Hexanchus griseus, and a Echinorhinus cookei.
    Nakamura I; Meyer CG; Sato K
    PLoS One; 2015; 10(6):e0127667. PubMed ID: 26061525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep-sea sharks: Relation between the liver's buoyancy and red aerobic muscle volumes, a new approach.
    Pinte N; Godefroid M; Abbas O; Baeten V; Mallefet J
    Comp Biochem Physiol A Mol Integr Physiol; 2019 Oct; 236():110520. PubMed ID: 31278989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Caudal fin allometry in the white shark Carcharodon carcharias: implications for locomotory performance and ecology.
    Lingham-Soliar T
    Naturwissenschaften; 2005 May; 92(5):231-6. PubMed ID: 15772806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical challenges to freshwater residency in sharks and rays.
    Gleiss AC; Potvin J; Keleher JJ; Whitty JM; Morgan DL; Goldbogen JA
    J Exp Biol; 2015 Apr; 218(Pt 7):1099-110. PubMed ID: 25573824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Near-equal compressibility of liver oil and seawater minimises buoyancy changes in deep-sea sharks and chimaeras.
    Priede IG; Burgass RW; Mandalakis M; Spyros A; Gikas P; Burns F; Drewery J
    J Exp Biol; 2020 May; 223(Pt 9):. PubMed ID: 32291325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Great hammerhead sharks swim on their side to reduce transport costs.
    Payne NL; Iosilevskii G; Barnett A; Fischer C; Graham RT; Gleiss AC; Watanabe YY
    Nat Commun; 2016 Jul; 7():12289. PubMed ID: 27457414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of high-performance swimming in sharks: transformations of the musculotendinous system from subcarangiform to thunniform swimmers.
    Gemballa S; Konstantinidis P; Donley JM; Sepulveda C; Shadwick RE
    J Morphol; 2006 Apr; 267(4):477-93. PubMed ID: 16429422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Convergent evolution in mechanical design of lamnid sharks and tunas.
    Donley JM; Sepulveda CA; Konstantinidis P; Gemballa S; Shadwick RE
    Nature; 2004 May; 429(6987):61-5. PubMed ID: 15129279
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrodynamic function of biomimetic shark skin: effect of denticle pattern and spacing.
    Wen L; Weaver JC; Thornycroft PJ; Lauder GV
    Bioinspir Biomim; 2015 Nov; 10(6):066010. PubMed ID: 26579634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrodynamic properties of biomimetic shark skin: effect of denticle size and swimming speed.
    Domel AG; Domel G; Weaver JC; Saadat M; Bertoldi K; Lauder GV
    Bioinspir Biomim; 2018 Aug; 13(5):056014. PubMed ID: 30018184
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative studies of high performance swimming in sharks I. Red muscle morphometrics, vascularization and ultrastructure.
    Bernal D; Sepulveda C; Mathieu-Costello O; Graham JB
    J Exp Biol; 2003 Aug; 206(Pt 16):2831-43. PubMed ID: 12847127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrodynamic function of dorsal fins in spiny dogfish and bamboo sharks during steady swimming.
    Maia A; Lauder GV; Wilga CD
    J Exp Biol; 2017 Nov; 220(Pt 21):3967-3975. PubMed ID: 28883085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The rise of pelagic sharks and adaptive evolution of pectoral fin morphology during the Cretaceous.
    Sternes PC; Schmitz L; Higham TE
    Curr Biol; 2024 Jun; 34(12):2764-2772.e3. PubMed ID: 38834065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Constructional morphology within the head of hammerhead sharks (sphyrnidae).
    Mara KR; Motta PJ; Martin AP; Hueter RE
    J Morphol; 2015 May; 276(5):526-39. PubMed ID: 25684106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Not all sharks are "swimming noses": variation in olfactory bulb size in cartilaginous fishes.
    Yopak KE; Lisney TJ; Collin SP
    Brain Struct Funct; 2015 Mar; 220(2):1127-43. PubMed ID: 24435575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipid composition of the liver oil of deep-sea sharks from the Chatham Rise, New Zealand.
    Wetherbee BM; Nichols PD
    Comp Biochem Physiol B Biochem Mol Biol; 2000 Apr; 125(4):511-21. PubMed ID: 10904864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of weight and frontal area of external telemetry packages on the kinematics, activity levels and swimming performance of small-bodied sharks.
    Bouyoucos IA; Suski CD; Mandelman JW; Brooks EJ
    J Fish Biol; 2017 May; 90(5):2097-2110. PubMed ID: 28239865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The hydrodynamic function of shark skin and two biomimetic applications.
    Oeffner J; Lauder GV
    J Exp Biol; 2012 Mar; 215(Pt 5):785-95. PubMed ID: 22323201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anatomy and evolution of heterocercal tail in lamniform sharks.
    Kim SH; Shimada K; Rigsby CK
    Anat Rec (Hoboken); 2013 Mar; 296(3):433-42. PubMed ID: 23381874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.