These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 29118200)

  • 1. Vestibular short-latency evoked potential abolished by low-frequency noise exposure in rats.
    Stewart CE; Kanicki AC; Altschuler RA; King WM
    J Neurophysiol; 2018 Feb; 119(2):662-667. PubMed ID: 29118200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intense noise exposure alters peripheral vestibular structures and physiology.
    Stewart CE; Bauer DS; Kanicki AC; Altschuler RA; King WM
    J Neurophysiol; 2020 Feb; 123(2):658-669. PubMed ID: 31875485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transient peripheral vestibular hypofunction measured with vestibular short-latency evoked potentials following noise exposure in rats.
    Stewart CE; Bauer DS; Altschuler RA; King WM
    J Neurophysiol; 2021 Nov; 126(5):1547-1554. PubMed ID: 34550030
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of white noise "masking" on vestibular evoked potentials recorded using different stimulus modalities.
    Freeman S; Plotnik M; Elidan J; Rosen LJ; Sohmer H
    Acta Otolaryngol; 1999; 119(3):311-5. PubMed ID: 10380734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exposure to Intense Noise Causes Vestibular Loss.
    Stewart CE; Kanicki AC; Bauer DS; Altschuler RA; King WM
    Mil Med; 2020 Jan; 185(Suppl 1):454-461. PubMed ID: 32074366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of noise on the vestibular system - Vestibular evoked potential studies in rats.
    Sohmer H; Elidan J; Plotnik M; Freeman S; Sockalingam R; Berkowitz Z; Mager M
    Noise Health; 1999; 2(5):41-52. PubMed ID: 12689484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for the utricular origin of the vestibular short-latency-evoked potential (VsEP) to bone-conducted vibration in guinea pig.
    Chihara Y; Wang V; Brown DJ
    Exp Brain Res; 2013 Aug; 229(2):157-70. PubMed ID: 23780310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of high intensity noise on the vestibular system in rats.
    Stewart C; Yu Y; Huang J; Maklad A; Tang X; Allison J; Mustain W; Zhou W; Zhu H
    Hear Res; 2016 May; 335():118-127. PubMed ID: 26970474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Utricular Sensitivity during Hydrodynamic Displacements of the Macula.
    Pastras CJ; Stefani SP; Curthoys IS; Camp AJ; Brown DJ
    J Assoc Res Otolaryngol; 2020 Oct; 21(5):409-423. PubMed ID: 32783163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional impairment of the vestibular end organ resulting from impulse noise exposure.
    Perez R; Freeman S; Cohen D; Sohmer H
    Laryngoscope; 2002 Jun; 112(6):1110-4. PubMed ID: 12160283
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compound gravity receptor polarization vectors evidenced by linear vestibular evoked potentials.
    Jones SM; Jones TA; Bell PL; Taylor MJ
    Hear Res; 2001 Apr; 154(1-2):54-61. PubMed ID: 11423215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sound-induced vertigo after cochlear implantation.
    Coordes A; Basta D; Götze R; Scholz S; Seidl RO; Ernst A; Todt I
    Otol Neurotol; 2012 Apr; 33(3):335-42. PubMed ID: 22334157
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural basis of new clinical vestibular tests: otolithic neural responses to sound and vibration.
    Curthoys IS; Vulovic V; Burgess AM; Manzari L; Sokolic L; Pogson J; Robins M; Mezey LE; Goonetilleke S; Cornell ED; MacDougall HG
    Clin Exp Pharmacol Physiol; 2014 May; 41(5):371-80. PubMed ID: 24754528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of short latency vestibular evoked potentials in the neonatal rat.
    Freeman S; Plotnik M; Elidan J; Sohmer H
    Hear Res; 1999 Nov; 137(1-2):51-8. PubMed ID: 10545633
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Origins of the short latency vestibular evoked potentials (VsEPs) to linear acceleration impulses.
    Plotnik M; Sichel JY; Elidan J; Honrubia V; Sohmer H
    Am J Otol; 1999 Mar; 20(2):238-43. PubMed ID: 10100529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiological and morphological assessment of the saccule in Guinea pigs after noise exposure.
    Hsu WC; Wang JD; Lue JH; Day AS; Young YH
    Arch Otolaryngol Head Neck Surg; 2008 Oct; 134(10):1099-106. PubMed ID: 18936359
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of evoked potentials to objectively differentiate between selective vulnerability of cochlear and vestibular end organ function.
    Freeman S; Priner R; Mager M; Sichel JY; Perez R; Elidan J; Sohmer H
    J Basic Clin Physiol Pharmacol; 2000; 11(3):193-200. PubMed ID: 11041383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vestibular Response to Electrical Stimulation of the Otolith Organs. Implications in the Development of A Vestibular Implant for the Improvement of the Sensation of Gravitoinertial Accelerations.
    Ramos de Miguel A; Falcon Gonzalez JC; Ramos Macias A
    J Int Adv Otol; 2017 Aug; 13(2):154-161. PubMed ID: 28816686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential effect of the loop diuretic furosemide on short latency auditory and vestibular-evoked potentials.
    Freeman S; Plotnik M; Elidan J; Sohmer H
    Am J Otol; 1999 Jan; 20(1):41-5. PubMed ID: 9918170
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combined administration of kanamycin and furosemide does not result in loss of vestibular function in Guinea pigs.
    Bremer HG; de Groot JC; Versnel H; Klis SF
    Audiol Neurootol; 2012; 17(1):25-38. PubMed ID: 21625081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.