BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 29118336)

  • 1. Self-assembling dipeptide antibacterial nanostructures with membrane disrupting activity.
    Schnaider L; Brahmachari S; Schmidt NW; Mensa B; Shaham-Niv S; Bychenko D; Adler-Abramovich L; Shimon LJW; Kolusheva S; DeGrado WF; Gazit E
    Nat Commun; 2017 Nov; 8(1):1365. PubMed ID: 29118336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-assembling diphenylalanine peptide nanotubes selectively eradicate bacterial biofilm infection.
    Porter SL; Coulter SM; Pentlavalli S; Thompson TP; Laverty G
    Acta Biomater; 2018 Sep; 77():96-105. PubMed ID: 30031161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antibacterial and Antibiofilm Properties of Self-Assembled Dipeptide Nanotubes.
    Soares I; Rodrigues I; da Costa PM; Gales L
    Int J Mol Sci; 2022 Dec; 24(1):. PubMed ID: 36613773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent advances in the fabrication and bio-medical applications of self-assembled dipeptide nanostructures.
    Chibh S; Mishra J; Kour A; Chauhan VS; Panda JJ
    Nanomedicine (Lond); 2021 Jan; 16(2):139-163. PubMed ID: 33480272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing the Potency of Antimicrobial Peptides through Molecular Engineering and Self-Assembly.
    Lombardi L; Shi Y; Falanga A; Galdiero E; de Alteriis E; Franci G; Chourpa I; Azevedo HS; Galdiero S
    Biomacromolecules; 2019 Mar; 20(3):1362-1374. PubMed ID: 30735368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disassembly of Dipeptide Single Crystals Can Transform the Lipid Membrane into a Network.
    Fu M; Li Q; Sun B; Yang Y; Dai L; Nylander T; Li J
    ACS Nano; 2017 Jul; 11(7):7349-7354. PubMed ID: 28657720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-assembly of ciprofloxacin and a tripeptide into an antimicrobial nanostructured hydrogel.
    Marchesan S; Qu Y; Waddington LJ; Easton CD; Glattauer V; Lithgow TJ; McLean KM; Forsythe JS; Hartley PG
    Biomaterials; 2013 May; 34(14):3678-87. PubMed ID: 23422591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced Nanoassembly-Incorporated Antibacterial Composite Materials.
    Schnaider L; Ghosh M; Bychenko D; Grigoriants I; Ya'ari S; Shalev Antsel T; Matalon S; Sarig R; Brosh T; Pilo R; Gazit E; Adler-Abramovich L
    ACS Appl Mater Interfaces; 2019 Jun; 11(24):21334-21342. PubMed ID: 31134790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-assembly of cationic multidomain peptide hydrogels: supramolecular nanostructure and rheological properties dictate antimicrobial activity.
    Jiang L; Xu D; Sellati TJ; Dong H
    Nanoscale; 2015 Dec; 7(45):19160-9. PubMed ID: 26524425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent advances: peptides and self-assembled peptide-nanosystems for antimicrobial therapy and diagnosis.
    Zou P; Chen WT; Sun T; Gao Y; Li LL; Wang H
    Biomater Sci; 2020 Sep; 8(18):4975-4996. PubMed ID: 32931527
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expanding the structural diversity of peptide assemblies by coassembling dipeptides with diphenylalanine.
    Tang Y; Yao Y; Wei G
    Nanoscale; 2020 Feb; 12(5):3038-3049. PubMed ID: 31971529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bougainvillea flower extract mediated zinc oxide's nanomaterials for antimicrobial and anticancer activity.
    Ahmar Rauf M; Oves M; Ur Rehman F; Rauf Khan A; Husain N
    Biomed Pharmacother; 2019 Aug; 116():108983. PubMed ID: 31125822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dipeptide nanostructures: Synthesis, interactions, advantages and biomedical applications.
    Acet Ö; Shcharbin D; Zhogla V; Kirsanov P; Halets-Bui I; Önal Acet B; Gök T; Bryszewska M; Odabaşı M
    Colloids Surf B Biointerfaces; 2023 Feb; 222():113031. PubMed ID: 36435026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Patterned arrays of ordered peptide nanostructures.
    Adler-Abramovich L; Aronov D; Gazit E; Rosenman G
    J Nanosci Nanotechnol; 2009 Mar; 9(3):1701-8. PubMed ID: 19435028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Responsive nanostructures from aqueous assembly of rigid-flexible block molecules.
    Kim HJ; Kim T; Lee M
    Acc Chem Res; 2011 Jan; 44(1):72-82. PubMed ID: 21128602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expanding the solvent chemical space for self-assembly of dipeptide nanostructures.
    Mason TO; Chirgadze DY; Levin A; Adler-Abramovich L; Gazit E; Knowles TP; Buell AK
    ACS Nano; 2014 Feb; 8(2):1243-53. PubMed ID: 24422499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stabilized cationic dipeptide capped gold/silver nanohybrids: Towards enhanced antibacterial and antifungal efficacy.
    Bajaj M; Pandey SK; Nain T; Brar SK; Singh P; Singh S; Wangoo N; Sharma RK
    Colloids Surf B Biointerfaces; 2017 Oct; 158():397-407. PubMed ID: 28719861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-assembling DNA-peptide hybrids: morphological consequences of oligonucleotide grafting to a pathogenic amyloid fibrils forming dipeptide.
    Gour N; Kedracki D; Safir I; Ngo KX; Vebert-Nardin C
    Chem Commun (Camb); 2012 Jun; 48(44):5440-2. PubMed ID: 22534735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. O-Mannosylation Affords a Glycopeptide Hydrogel with Inherent Antibacterial Activities against E. coli via Multivalent Interactions between Lectins and Supramolecular Assemblies.
    Li J; Liang S; Yan Y; Tian X; Li X
    Macromol Biosci; 2019 Sep; 19(9):e1900124. PubMed ID: 31310440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-assembly of t-butyloxycarbonyl protected dipeptide methyl esters composed of leucine, isoleucine, and valine into highly organized structures from alcohol and aqueous alcohol mixtures.
    Subbalakshmi C; Basak P; Nagaraj R
    Biopolymers; 2017 Nov; 108(6):. PubMed ID: 28589640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.