These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 29118401)
1. Slow waves in locally resonant metamaterials line defect waveguides. Kaina N; Causier A; Bourlier Y; Fink M; Berthelot T; Lerosey G Sci Rep; 2017 Nov; 7(1):15105. PubMed ID: 29118401 [TBL] [Abstract][Full Text] [Related]
2. Sub-wavelength energy trapping of elastic waves in a metamaterial. Colombi A; Roux P; Rupin M J Acoust Soc Am; 2014 Aug; 136(2):EL192-8. PubMed ID: 25096146 [TBL] [Abstract][Full Text] [Related]
3. Implementation of dispersion-free slow acoustic wave propagation and phase engineering with helical-structured metamaterials. Zhu X; Li K; Zhang P; Zhu J; Zhang J; Tian C; Liu S Nat Commun; 2016 May; 7():11731. PubMed ID: 27198887 [TBL] [Abstract][Full Text] [Related]
4. Focusing on Plates: Controlling Guided Waves using Negative Refraction. Philippe FD; Murray TW; Prada C Sci Rep; 2015 Jun; 5():11112. PubMed ID: 26053960 [TBL] [Abstract][Full Text] [Related]
5. Feasibility study of nanoscaled optical waveguide based on near-resonant surface plasmon polariton. Yan M; Thylén L; Qiu M; Parekh D Opt Express; 2008 May; 16(10):7499-507. PubMed ID: 18545455 [TBL] [Abstract][Full Text] [Related]
6. Dispersion control of silicon nanophotonic waveguides using sub-wavelength grating metamaterials in near- and mid-IR wavelengths. Benedikovic D; Berciano M; Alonso-Ramos C; Le Roux X; Cassan E; Marris-Morini D; Vivien L Opt Express; 2017 Aug; 25(16):19468-19478. PubMed ID: 29041140 [TBL] [Abstract][Full Text] [Related]
7. Experimental realization of on-chip topological nanoelectromechanical metamaterials. Cha J; Kim KW; Daraio C Nature; 2018 Dec; 564(7735):229-233. PubMed ID: 30542167 [TBL] [Abstract][Full Text] [Related]
9. An overview of elastic waveguides with dynamic sub-structures. Slepyan L; Movchan AB Philos Trans A Math Phys Eng Sci; 2022 Nov; 380(2237):20210381. PubMed ID: 36209812 [TBL] [Abstract][Full Text] [Related]
10. Extreme anisotropy and dispersion engineering in locally resonant acoustic metamaterials. Yves S; Alù A J Acoust Soc Am; 2021 Sep; 150(3):2040. PubMed ID: 34598606 [TBL] [Abstract][Full Text] [Related]
12. Resonant generation of propagating second-harmonic spin waves in nano-waveguides. Nikolaev KO; Lake SR; Schmidt G; Demokritov SO; Demidov VE Nat Commun; 2024 Feb; 15(1):1827. PubMed ID: 38418458 [TBL] [Abstract][Full Text] [Related]
13. Wave attenuation and trapping in 3D printed cantilever-in-mass metamaterials with spatially correlated variability. Beli D; Fabro AT; Ruzzene M; Arruda JRF Sci Rep; 2019 Apr; 9(1):5617. PubMed ID: 30948748 [TBL] [Abstract][Full Text] [Related]
14. Subwavelength wave manipulation in a thin surface-wave bandgap crystal. Gao Z; Wang Z; Zhang B Opt Lett; 2018 Jan; 43(1):50-53. PubMed ID: 29328194 [TBL] [Abstract][Full Text] [Related]
15. On the spatial sampling and beat effects in discrete wave profiles of lumped acoustic metamaterials. Nouh M J Acoust Soc Am; 2017 Mar; 141(3):1514. PubMed ID: 28372099 [TBL] [Abstract][Full Text] [Related]
16. Slowing designer surface plasmons in a surface-wave photonic crystal. Wang Z; Gao Z; Zhang Y; Lou J; Cheng P; Zhao H Appl Opt; 2018 Sep; 57(25):7089-7093. PubMed ID: 30182966 [TBL] [Abstract][Full Text] [Related]
17. Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials. Kaina N; Lemoult F; Fink M; Lerosey G Nature; 2015 Sep; 525(7567):77-81. PubMed ID: 26333466 [TBL] [Abstract][Full Text] [Related]
18. Compact Acoustic Rainbow Trapping in a Bioinspired Spiral Array of Graded Locally Resonant Metamaterials. Zhao L; Zhou S Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30769956 [TBL] [Abstract][Full Text] [Related]
19. Metasurface transformation for surface wave control. Martini E; Mencagli M; Maci S Philos Trans A Math Phys Eng Sci; 2015 Aug; 373(2049):. PubMed ID: 26217056 [TBL] [Abstract][Full Text] [Related]
20. On the coupling of resonance and Bragg scattering effects in three-dimensional locally resonant sonic materials. Yuan B; Humphrey VF; Wen J; Wen X Ultrasonics; 2013 Sep; 53(7):1332-43. PubMed ID: 23659875 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]