BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 29118406)

  • 1. Single-cell Co-expression Subnetwork Analysis.
    Bartlett TE; Müller S; Diaz A
    Sci Rep; 2017 Nov; 7(1):15066. PubMed ID: 29118406
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene Regulatory Network Inference from Single-Cell Data Using Multivariate Information Measures.
    Chan TE; Stumpf MPH; Babtie AC
    Cell Syst; 2017 Sep; 5(3):251-267.e3. PubMed ID: 28957658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell Heterogeneity Analysis in Single-Cell RNA-seq Data Using Mixture Exponential Graph and Markov Random Field Model.
    Wang Y; Tian X; Ai D
    Biomed Res Int; 2021; 2021():9919080. PubMed ID: 34095314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Network Inference from Single-Cell Transcriptomic Data.
    Todorov H; Cannoodt R; Saelens W; Saeys Y
    Methods Mol Biol; 2019; 1883():235-249. PubMed ID: 30547403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Whole-Transcriptome Causal Network Inference with Genomic and Transcriptomic Data.
    Wang L; Michoel T
    Methods Mol Biol; 2019; 1883():95-109. PubMed ID: 30547397
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BTR: training asynchronous Boolean models using single-cell expression data.
    Lim CY; Wang H; Woodhouse S; Piterman N; Wernisch L; Fisher J; Göttgens B
    BMC Bioinformatics; 2016 Sep; 17(1):355. PubMed ID: 27600248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human gene coexpression landscape: confident network derived from tissue transcriptomic profiles.
    Prieto C; Risueño A; Fontanillo C; De las Rivas J
    PLoS One; 2008; 3(12):e3911. PubMed ID: 19081792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Building gene regulatory networks from scATAC-seq and scRNA-seq using Linked Self Organizing Maps.
    Jansen C; Ramirez RN; El-Ali NC; Gomez-Cabrero D; Tegner J; Merkenschlager M; Conesa A; Mortazavi A
    PLoS Comput Biol; 2019 Nov; 15(11):e1006555. PubMed ID: 31682608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inference of Gene Regulatory Network from Single-Cell Transcriptomic Data Using pySCENIC.
    Kumar N; Mishra B; Athar M; Mukhtar S
    Methods Mol Biol; 2021; 2328():171-182. PubMed ID: 34251625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inference of Gene Co-expression Networks from Single-Cell RNA-Sequencing Data.
    Lamere AT; Li J
    Methods Mol Biol; 2019; 1935():141-153. PubMed ID: 30758825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Classification of Single-Cell Gene Expression Trajectories from Incomplete and Noisy Data.
    Karbalayghareh A; Braga-Neto U; Dougherty ER
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(1):193-207. PubMed ID: 29053466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluating methods of inferring gene regulatory networks highlights their lack of performance for single cell gene expression data.
    Chen S; Mar JC
    BMC Bioinformatics; 2018 Jun; 19(1):232. PubMed ID: 29914350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Construction of Parkinson's disease marker-based weighted protein-protein interaction network for prioritization of co-expressed genes.
    George G; Valiya Parambath S; Lokappa SB; Varkey J
    Gene; 2019 May; 697():67-77. PubMed ID: 30776463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluating measures of association for single-cell transcriptomics.
    Skinnider MA; Squair JW; Foster LJ
    Nat Methods; 2019 May; 16(5):381-386. PubMed ID: 30962620
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Processing, visualising and reconstructing network models from single-cell data.
    Woodhouse S; Moignard V; Göttgens B; Fisher J
    Immunol Cell Biol; 2016 Mar; 94(3):256-65. PubMed ID: 26577213
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep learning of gene relationships from single cell time-course expression data.
    Yuan Y; Bar-Joseph Z
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33876191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Network methods for describing sample relationships in genomic datasets: application to Huntington's disease.
    Oldham MC; Langfelder P; Horvath S
    BMC Syst Biol; 2012 Jun; 6():63. PubMed ID: 22691535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Network modeling of single-cell omics data: challenges, opportunities, and progresses.
    Blencowe M; Arneson D; Ding J; Chen YW; Saleem Z; Yang X
    Emerg Top Life Sci; 2019 Aug; 3(4):379-398. PubMed ID: 32270049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Harnessing naturally randomized transcription to infer regulatory relationships among genes.
    Chen LS; Emmert-Streib F; Storey JD
    Genome Biol; 2007; 8(10):R219. PubMed ID: 17931418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrative single-cell omics analyses reveal epigenetic heterogeneity in mouse embryonic stem cells.
    Luo Y; He J; Xu X; Sun MA; Wu X; Lu X; Xie H
    PLoS Comput Biol; 2018 Mar; 14(3):e1006034. PubMed ID: 29561833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.