These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
344 related articles for article (PubMed ID: 29119158)
1. Resonance Raman and IR spectroscopy of aligned carbon nanotube arrays with extremely narrow diameters prepared with molecular catalysts on steel substrates. Jain SM; Cesano F; Scarano D; Edvinsson T Phys Chem Chem Phys; 2017 Nov; 19(45):30667-30674. PubMed ID: 29119158 [TBL] [Abstract][Full Text] [Related]
2. En route to controlled catalytic CVD synthesis of densely packed and vertically aligned nitrogen-doped carbon nanotube arrays. Boncel S; Pattinson SW; Geiser V; Shaffer MS; Koziol KK Beilstein J Nanotechnol; 2014; 5():219-33. PubMed ID: 24605289 [TBL] [Abstract][Full Text] [Related]
3. A sweet spot for highly efficient growth of vertically aligned single-walled carbon nanotube forests enabling their unique structures and properties. Chen G; Davis RC; Futaba DN; Sakurai S; Kobashi K; Yumura M; Hata K Nanoscale; 2016 Jan; 8(1):162-71. PubMed ID: 26619935 [TBL] [Abstract][Full Text] [Related]
4. Metal-modified and vertically aligned carbon nanotube sensors array for landfill gas monitoring applications. Penza M; Rossi R; Alvisi M; Serra E Nanotechnology; 2010 Mar; 21(10):105501. PubMed ID: 20154374 [TBL] [Abstract][Full Text] [Related]
5. Distribution of Iron Nanoparticles in Arrays of Vertically Aligned Carbon Nanotubes Grown by Chemical Vapor Deposition. Okotrub AV; Gorodetskiy DV; Gusel'nikov AV; Kondranova AM; Bulusheva LG; Korabovska M; Meija R; Erts D Materials (Basel); 2022 Sep; 15(19):. PubMed ID: 36233981 [TBL] [Abstract][Full Text] [Related]
6. Direct wall number control of carbon nanotube forests from engineered iron catalysts. Chiang WH; Futaba DN; Yumura M; Hata K J Nanosci Nanotechnol; 2013 Apr; 13(4):2745-51. PubMed ID: 23763154 [TBL] [Abstract][Full Text] [Related]
7. Influence of synthesis parameters on CCVD growth of vertically aligned carbon nanotubes over aluminum substrate. Szabó A; Kecsenovity E; Pápa Z; Gyulavári T; Németh K; Horvath E; Hernadi K Sci Rep; 2017 Aug; 7(1):9557. PubMed ID: 28842644 [TBL] [Abstract][Full Text] [Related]
8. Facile preparation of free-standing carbon nanotube arrays produced using two-step floating-ferrocene chemical vapor deposition. Yang X; Yuan L; Peterson VK; Minett AI; Yin Y; Harris AT ACS Appl Mater Interfaces; 2012 Mar; 4(3):1417-22. PubMed ID: 22311688 [TBL] [Abstract][Full Text] [Related]
9. Study on the controllable scale-up growth of vertically-aligned carbon nanotube arrays. Ge L; Chen J; Chen J; Zhu Z; Rudolph V J Nanosci Nanotechnol; 2012 Mar; 12(3):2722-32. PubMed ID: 22755115 [TBL] [Abstract][Full Text] [Related]
10. A two-step shearing strategy to disperse long carbon nanotubes from vertically aligned multiwalled carbon nanotube arrays for transparent conductive films. Xu GH; Zhang Q; Huang JQ; Zhao MQ; Zhou WP; Wei F Langmuir; 2010 Feb; 26(4):2798-804. PubMed ID: 19817403 [TBL] [Abstract][Full Text] [Related]
11. A one-step technique to prepare aligned arrays of carbon nanotubes. Mahanandia P; Nanda KK Nanotechnology; 2008 Apr; 19(15):155602. PubMed ID: 21825616 [TBL] [Abstract][Full Text] [Related]
12. Vertically aligned dense carbon nanotube growth with diameter control by block copolymer micelle catalyst templates. Liu X; Bigioni TP; Xu Y; Cassell AM; Cruden BA J Phys Chem B; 2006 Oct; 110(41):20102-6. PubMed ID: 17034181 [TBL] [Abstract][Full Text] [Related]
13. Rational Modification of a Metallic Substrate for CVD Growth of Carbon Nanotubes. Li X; Baker-Fales M; Almkhelfe H; Gaede NR; Harris TS; Amama PB Sci Rep; 2018 Mar; 8(1):4349. PubMed ID: 29531239 [TBL] [Abstract][Full Text] [Related]
14. Investigation on the Formation Mechanism of Double-Layer Vertically Aligned Carbon Nanotube Arrays via Single-Step Chemical Vapour Deposition. Zhang S; Peng D; Xie H; Zheng Q; Zhang Y Nanomicro Lett; 2017; 9(1):12. PubMed ID: 30460309 [TBL] [Abstract][Full Text] [Related]
15. In situ synthesis of carbon nanotubes on heated scanning probes using dip pen techniques. Gargate RV; Banerjee D Scanning; 2008; 30(2):151-8. PubMed ID: 18241043 [TBL] [Abstract][Full Text] [Related]
17. Effects of Catalyst Pretreatment on Carbon Nanotube Synthesis from Methane Using Thin Stainless-Steel Foil as Catalyst by Chemical Vapor Deposition Method. Huynh TM; Nguyen S; Nguyen NTK; Nguyen HM; Do NUP; Nguyen DC; Nguyen LH; Nguyen CV Nanomaterials (Basel); 2020 Dec; 11(1):. PubMed ID: 33379133 [TBL] [Abstract][Full Text] [Related]
18. Precise control of the number of walls formed during carbon nanotube growth using chemical vapor deposition. Yang HS; Zhang L; Dong XH; Zhu WM; Zhu J; Nelson BJ; Zhang XB Nanotechnology; 2012 Feb; 23(6):065604. PubMed ID: 22248487 [TBL] [Abstract][Full Text] [Related]
19. Synthesis of an ultradense forest of vertically aligned triple-walled carbon nanotubes of uniform diameter and length using hollow catalytic nanoparticles. Baliyan A; Nakajima Y; Fukuda T; Uchida T; Hanajiri T; Maekawa T J Am Chem Soc; 2014 Jan; 136(3):1047-53. PubMed ID: 24369068 [TBL] [Abstract][Full Text] [Related]
20. Abrasion as a catalyst deposition technique for carbon nanotube growth. Alvarez NT; Pint CL; Hauge RH; Tour JM J Am Chem Soc; 2009 Oct; 131(41):15041-8. PubMed ID: 19764728 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]