These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

383 related articles for article (PubMed ID: 29119291)

  • 1. Determination of histone epigenetic marks in Arabidopsis and tomato genes in the early response to Botrytis cinerea.
    Crespo-Salvador Ó; Escamilla-Aguilar M; López-Cruz J; López-Rodas G; González-Bosch C
    Plant Cell Rep; 2018 Jan; 37(1):153-166. PubMed ID: 29119291
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epigenetic regulation of the expression of WRKY75 transcription factor in response to biotic and abiotic stresses in Solanaceae plants.
    López-Galiano MJ; González-Hernández AI; Crespo-Salvador O; Rausell C; Real MD; Escamilla M; Camañes G; García-Agustín P; González-Bosch C; García-Robles I
    Plant Cell Rep; 2018 Jan; 37(1):167-176. PubMed ID: 29079899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Absence of Cu-Zn superoxide dismutase BCSOD1 reduces Botrytis cinerea virulence in Arabidopsis and tomato plants, revealing interplay among reactive oxygen species, callose and signalling pathways.
    López-Cruz J; Óscar CS; Emma FC; Pilar GA; Carmen GB
    Mol Plant Pathol; 2017 Jan; 18(1):16-31. PubMed ID: 26780422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hexanoic acid protects tomato plants against Botrytis cinerea by priming defence responses and reducing oxidative stress.
    Finiti I; de la O Leyva M; Vicedo B; Gómez-Pastor R; López-Cruz J; García-Agustín P; Real MD; González-Bosch C
    Mol Plant Pathol; 2014 Aug; 15(6):550-62. PubMed ID: 24320938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microarray analysis of Arabidopsis WRKY33 mutants in response to the necrotrophic fungus Botrytis cinerea.
    Sham A; Moustafa K; Al-Shamisi S; Alyan S; Iratni R; AbuQamar S
    PLoS One; 2017; 12(2):e0172343. PubMed ID: 28207847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular mechanism of modulating miR482b level in tomato with botrytis cinerea infection.
    Wu F; Xu J; Gao T; Huang D; Jin W
    BMC Plant Biol; 2021 Oct; 21(1):496. PubMed ID: 34706648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tomato histone H2B monoubiquitination enzymes SlHUB1 and SlHUB2 contribute to disease resistance against Botrytis cinerea through modulating the balance between SA- and JA/ET-mediated signaling pathways.
    Zhang Y; Li D; Zhang H; Hong Y; Huang L; Liu S; Li X; Ouyang Z; Song F
    BMC Plant Biol; 2015 Oct; 15():252. PubMed ID: 26490733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silencing of DND1 in potato and tomato impedes conidial germination, attachment and hyphal growth of Botrytis cinerea.
    Sun K; van Tuinen A; van Kan JAL; Wolters AA; Jacobsen E; Visser RGF; Bai Y
    BMC Plant Biol; 2017 Dec; 17(1):235. PubMed ID: 29212470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced resistance to fungal and bacterial diseases in tomato and Arabidopsis expressing BSR2 from rice.
    Maeda S; Yokotani N; Oda K; Mori M
    Plant Cell Rep; 2020 Nov; 39(11):1493-1503. PubMed ID: 32772129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional analysis of endo-1,4-β-glucanases in response to Botrytis cinerea and Pseudomonas syringae reveals their involvement in plant-pathogen interactions.
    Finiti I; Leyva MO; López-Cruz J; Calderan Rodrigues B; Vicedo B; Angulo C; Bennett AB; Grant M; García-Agustín P; González-Bosch C
    Plant Biol (Stuttg); 2013 Sep; 15(5):819-31. PubMed ID: 23528138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Histone Marks Signature in Exonic and Intronic Regions Is Relevant in Early Response of Tomato Genes to
    Crespo-Salvador Ó; Sánchez-Giménez L; López-Galiano MJ; Fernández-Crespo E; Schalschi L; García-Robles I; Rausell C; Real MD; González-Bosch C
    Plants (Basel); 2020 Mar; 9(3):. PubMed ID: 32121544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of dioxygenase α-DOX2 and SA in basal response and in hexanoic acid-induced resistance of tomato (Solanum lycopersicum) plants against Botrytis cinerea.
    Angulo C; de la O Leyva M; Finiti I; López-Cruz J; Fernández-Crespo E; García-Agustín P; González-Bosch C
    J Plant Physiol; 2015 Mar; 175():163-73. PubMed ID: 25543862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arabidopsis Elongator subunit 2 positively contributes to resistance to the necrotrophic fungal pathogens Botrytis cinerea and Alternaria brassicicola.
    Wang C; Ding Y; Yao J; Zhang Y; Sun Y; Colee J; Mou Z
    Plant J; 2015 Sep; 83(6):1019-33. PubMed ID: 26216741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. miR319c acts as a positive regulator of tomato against Botrytis cinerea infection by targeting TCP29.
    Wu F; Qi J; Meng X; Jin W
    Plant Sci; 2020 Nov; 300():110610. PubMed ID: 33180702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Absence of the endo-beta-1,4-glucanases Cel1 and Cel2 reduces susceptibility to Botrytis cinerea in tomato.
    Flors V; Leyva Mde L; Vicedo B; Finiti I; Real MD; García-Agustín P; Bennett AB; González-Bosch C
    Plant J; 2007 Dec; 52(6):1027-40. PubMed ID: 17916112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ectopic Expression of Grapevine Gene
    Tian S; Yin X; Fu P; Wu W; Lu J
    Int J Mol Sci; 2019 Dec; 21(1):. PubMed ID: 31892116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The BOS loci of Arabidopsis are required for resistance to Botrytis cinerea infection.
    Veronese P; Chen X; Bluhm B; Salmeron J; Dietrich R; Mengiste T
    Plant J; 2004 Nov; 40(4):558-74. PubMed ID: 15500471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptome Profiling Data of
    Srivastava DA; Arya GC; Pandaranayaka EP; Manasherova E; Prusky DB; Elad Y; Frenkel O; Harel A
    Mol Plant Microbe Interact; 2020 Sep; 33(9):1103-1107. PubMed ID: 32552519
    [No Abstract]   [Full Text] [Related]  

  • 19. Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways.
    Weiberg A; Wang M; Lin FM; Zhao H; Zhang Z; Kaloshian I; Huang HD; Jin H
    Science; 2013 Oct; 342(6154):118-23. PubMed ID: 24092744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulating plant primary amino acid metabolism as a necrotrophic virulence strategy: the immune-regulatory role of asparagine synthetase in Botrytis cinerea-tomato interaction.
    Seifi H; De Vleesschauwer D; Aziz A; Höfte M
    Plant Signal Behav; 2014; 9(2):e27995. PubMed ID: 24521937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.