These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

481 related articles for article (PubMed ID: 29119491)

  • 1. The mechanism of 2-chlorobiphenyl oxidative degradation by nanoscale zero-valent iron in the presence of dissolved oxygen.
    Wang Y; Liu L; Fang G; Wang L; Kengara FO; Zhu C
    Environ Sci Pollut Res Int; 2018 Jan; 25(3):2265-2272. PubMed ID: 29119491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Superoxide mediated production of hydroxyl radicals by magnetite nanoparticles: demonstration in the degradation of 2-chlorobiphenyl.
    Fang GD; Zhou DM; Dionysiou DD
    J Hazard Mater; 2013 Apr; 250-251():68-75. PubMed ID: 23434481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of anions and humic acid on the performance of nanoscale zero-valent iron particles coated with polyacrylic acid.
    Kim HS; Ahn JY; Kim C; Lee S; Hwang I
    Chemosphere; 2014 Oct; 113():93-100. PubMed ID: 25065795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performance of bimetallic nanoscale zero-valent iron particles for removal of oxytetracycline.
    Wu Y; Yue Q; Gao Y; Ren Z; Gao B
    J Environ Sci (China); 2018 Jul; 69():173-182. PubMed ID: 29941253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mechanism for bacteriophage f2 removal by nanoscale zero-valent iron.
    Cheng R; Li G; Shi L; Xue X; Kang M; Zheng X
    Water Res; 2016 Nov; 105():429-435. PubMed ID: 27665430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degradation of 17α-ethinylestradiol by nano zero valent iron under different pH and dissolved oxygen levels.
    Karim S; Bae S; Greenwood D; Hanna K; Singhal N
    Water Res; 2017 Nov; 125():32-41. PubMed ID: 28826034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Humic acid and metal ions accelerating the dechlorination of 4-chlorobiphenyl by nanoscale zero-valent iron.
    Wang Y; Zhou D; Wang Y; Zhu X; Jin S
    J Environ Sci (China); 2011; 23(8):1286-92. PubMed ID: 22128535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Factors influencing degradation of trichloroethylene by sulfide-modified nanoscale zero-valent iron in aqueous solution.
    Dong H; Zhang C; Deng J; Jiang Z; Zhang L; Cheng Y; Hou K; Tang L; Zeng G
    Water Res; 2018 May; 135():1-10. PubMed ID: 29438739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removing pentachlorophenol from water using a nanoscale zero-valent iron/H2O2 system.
    Cheng R; Cheng C; Liu GH; Zheng X; Li G; Li J
    Chemosphere; 2015 Dec; 141():138-43. PubMed ID: 26184790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In-depth exploration of toxicity mechanism of nanoscale zero-valent iron and its aging products toward Escherichia coli under aerobic and anaerobic conditions.
    Li L; Dong H; Lu Y; Zhang H; Li Y; Xiao J; Xiao S; Jin Z
    Environ Pollut; 2022 Nov; 313():120118. PubMed ID: 36087891
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidative degradation of organic compounds using zero-valent iron in the presence of natural organic matter serving as an electron shuttle.
    Kang SH; Choi W
    Environ Sci Technol; 2009 Feb; 43(3):878-83. PubMed ID: 19245030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PCE dissolution and simultaneous dechlorination by nanoscale zero-valent iron particles in a DNAPL source zone.
    Fagerlund F; Illangasekare TH; Phenrat T; Kim HJ; Lowry GV
    J Contam Hydrol; 2012 Apr; 131(1-4):9-28. PubMed ID: 22326687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of several crucial groundwater components on the toxicity of nanoscale zero-valent iron towards Escherichia coli under aerobic and anaerobic conditions.
    Xie Q; Li L; Dong H; Li R; Tian R; Chen J
    Chemosphere; 2021 Dec; 285():131453. PubMed ID: 34246093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Factors affecting the yield of oxidants from the reaction of nanoparticulate zero-valent iron and oxygen.
    Keenan CR; Sedlak DL
    Environ Sci Technol; 2008 Feb; 42(4):1262-7. PubMed ID: 18351103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidation of nanoscale zero-valent iron under sufficient and limited dissolved oxygen: Influences on aggregation behaviors.
    Jiang D; Hu X; Wang R; Yin D
    Chemosphere; 2015 Mar; 122():8-13. PubMed ID: 25441925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of chloramphenicol in aqueous solutions by modified humic acid loaded with nanoscale zero-valent iron particles.
    Yao B; Liu Y; Zou D
    Chemosphere; 2019 Jul; 226():298-306. PubMed ID: 30933739
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental and theoretical aspects of biochar-supported nanoscale zero-valent iron activating H
    Mao Q; Zhou Y; Yang Y; Zhang J; Liang L; Wang H; Luo S; Luo L; Jeyakumar P; Ok YS; Rizwan M
    J Hazard Mater; 2019 Dec; 380():120848. PubMed ID: 31319334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deactivation of nanoscale zero-valent iron by humic acid and by retention in water.
    Kim DG; Hwang YH; Shin HS; Ko SO
    Environ Technol; 2013; 34(9-12):1625-35. PubMed ID: 24191498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Structural Transformation of Nanoparticulate Zero-Valent Iron on Generation of Reactive Oxygen Species.
    He D; Ma J; Collins RN; Waite TD
    Environ Sci Technol; 2016 Apr; 50(7):3820-8. PubMed ID: 26958862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of potential positive effects of nZVI surface modification and concentration levels on TCE dechlorination in the presence of competing strong oxidants, using an experimental design.
    Kaifas D; Malleret L; Kumar N; Fétimi W; Claeys-Bruno M; Sergent M; Doumenq P
    Sci Total Environ; 2014 May; 481():335-42. PubMed ID: 24607397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.