These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Implementation of an FTIR spectral library of 486 filamentous fungi strains for rapid identification of molds. Lecellier A; Gaydou V; Mounier J; Hermet A; Castrec L; Barbier G; Ablain W; Manfait M; Toubas D; Sockalingum GD Food Microbiol; 2015 Feb; 45(Pt A):126-34. PubMed ID: 25481069 [TBL] [Abstract][Full Text] [Related]
4. A novel procedure for strain classification of fungal mycelium by cluster and artificial neural network analysis of Fourier transform infrared (FTIR) spectra. Naumann A Analyst; 2009 Jun; 134(6):1215-23. PubMed ID: 19475151 [TBL] [Abstract][Full Text] [Related]
5. Differentiation and identification of filamentous fungi by high-throughput FTIR spectroscopic analysis of mycelia. Lecellier A; Mounier J; Gaydou V; Castrec L; Barbier G; Ablain W; Manfait M; Toubas D; Sockalingum GD Int J Food Microbiol; 2014 Jan; 168-169():32-41. PubMed ID: 24231128 [TBL] [Abstract][Full Text] [Related]
6. Growing a classification tree using the apparent misclassification rate. Zintzaras E; Brown NP; Kowald A Comput Appl Biosci; 1994 Jun; 10(3):263-71. PubMed ID: 7922681 [TBL] [Abstract][Full Text] [Related]
7. A comparison of artificial neural networks and partial least squares modelling for the rapid detection of the microbial spoilage of beef fillets based on Fourier transform infrared spectral fingerprints. Panagou EZ; Mohareb FR; Argyri AA; Bessant CM; Nychas GJ Food Microbiol; 2011 Jun; 28(4):782-90. PubMed ID: 21511139 [TBL] [Abstract][Full Text] [Related]
8. Scalable classification of organisms into a taxonomy using hierarchical supervised learners. Sohsah GN; Ibrahimzada AR; Ayaz H; Cakmak A J Bioinform Comput Biol; 2020 Oct; 18(5):2050026. PubMed ID: 33125294 [TBL] [Abstract][Full Text] [Related]
9. On the quality of tree-based protein classification. Lazareva-Ulitsky B; Diemer K; Thomas PD Bioinformatics; 2005 May; 21(9):1876-90. PubMed ID: 15647305 [TBL] [Abstract][Full Text] [Related]
10. Assessing clustering results with reference taxonomies. Valiente G Genome Inform; 2006; 17(2):131-40. PubMed ID: 17503386 [TBL] [Abstract][Full Text] [Related]
11. Using machine learning to classify image features from canine pelvic radiographs: evaluation of partial least squares discriminant analysis and artificial neural network models. McEvoy FJ; Amigo JM Vet Radiol Ultrasound; 2013; 54(2):122-6. PubMed ID: 23228122 [TBL] [Abstract][Full Text] [Related]
12. Classifying dysmorphic syndromes by using artificial neural network based hierarchical decision tree. Özdemir ME; Telatar Z; Eroğul O; Tunca Y Australas Phys Eng Sci Med; 2018 Jun; 41(2):451-461. PubMed ID: 29717432 [TBL] [Abstract][Full Text] [Related]
13. Characterization of Yeasts and Filamentous Fungi using MALDI Lipid Phenotyping. Stübiger G; Wuczkowski M; Mancera L; Lopandic K; Sterflinger K; Belgacem O J Microbiol Methods; 2016 Nov; 130():27-37. PubMed ID: 27546717 [TBL] [Abstract][Full Text] [Related]
14. Determining quality of caviar from Caspian Sea based on Raman spectroscopy and using artificial neural networks. Mohamadi Monavar H; Afseth NK; Lozano J; Alimardani R; Omid M; Wold JP Talanta; 2013 Jul; 111():98-104. PubMed ID: 23622531 [TBL] [Abstract][Full Text] [Related]
15. Artificial neural networks (ANNs) and partial least squares (PLS) regression in the quantitative analysis of cocrystal formulations by Raman and ATR-FTIR spectroscopy. Barmpalexis P; Karagianni A; Nikolakakis I; Kachrimanis K J Pharm Biomed Anal; 2018 Sep; 158():214-224. PubMed ID: 29886369 [TBL] [Abstract][Full Text] [Related]
16. Statistical geometry based prediction of nonsynonymous SNP functional effects using random forest and neuro-fuzzy classifiers. Barenboim M; Masso M; Vaisman II; Jamison DC Proteins; 2008 Jun; 71(4):1930-9. PubMed ID: 18186470 [TBL] [Abstract][Full Text] [Related]
18. New support vector-based design method for binary hierarchical classifiers for multi-class classification problems. Wang YC; Casasent D Neural Netw; 2008; 21(2-3):502-10. PubMed ID: 18187285 [TBL] [Abstract][Full Text] [Related]
19. Predicting blood β-hydroxybutyrate using milk Fourier transform infrared spectrum, milk composition, and producer-reported variables with multiple linear regression, partial least squares regression, and artificial neural network. Pralle RS; Weigel KW; White HM J Dairy Sci; 2018 May; 101(5):4378-4387. PubMed ID: 29477523 [TBL] [Abstract][Full Text] [Related]
20. Beyond Zar: the use and abuse of classification statistics for otolith chemistry. Jones CM; Palmer M; Schaffler JJ J Fish Biol; 2017 Feb; 90(2):492-504. PubMed ID: 27325371 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]