These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 29120167)

  • 21. Neuronal cell loss accompanies the brain tissue response to chronically implanted silicon microelectrode arrays.
    Biran R; Martin DC; Tresco PA
    Exp Neurol; 2005 Sep; 195(1):115-26. PubMed ID: 16045910
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Histological evaluation of flexible neural implants; flexibility limit for reducing the tissue response?
    Lee HC; Ejserholm F; Gaire J; Currlin S; Schouenborg J; Wallman L; Bengtsson M; Park K; Otto KJ
    J Neural Eng; 2017 Jun; 14(3):036026. PubMed ID: 28470152
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A silicon based implantable microelectrode array for electrophysiological and dopamine recording from cortex to striatum in the non-human primate brain.
    Zhang S; Song Y; Wang M; Zhang Z; Fan X; Song X; Zhuang P; Yue F; Chan P; Cai X
    Biosens Bioelectron; 2016 Nov; 85():53-61. PubMed ID: 27155116
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chapter 7 - Neuromodulation: Deep brain stimulation, sensory neuroprostheses, and the neural-electrical interface.
    Andrews RJ
    Prog Brain Res; 2009; 180():127-39. PubMed ID: 20302832
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Neuroadhesive L1 coating attenuates acute microglial attachment to neural electrodes as revealed by live two-photon microscopy.
    Eles JR; Vazquez AL; Snyder NR; Lagenaur C; Murphy MC; Kozai TD; Cui XT
    Biomaterials; 2017 Jan; 113():279-292. PubMed ID: 27837661
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Brain microdialysis and its applications in experimental neurochemistry.
    Anderzhanova E; Wotjak CT
    Cell Tissue Res; 2013 Oct; 354(1):27-39. PubMed ID: 24022232
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spatiotemporal pH dynamics following insertion of neural microelectrode arrays.
    Johnson MD; Kao OE; Kipke DR
    J Neurosci Methods; 2007 Mar; 160(2):276-87. PubMed ID: 17084461
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cerebral astrocyte response to micromachined silicon implants.
    Turner JN; Shain W; Szarowski DH; Andersen M; Martins S; Isaacson M; Craighead H
    Exp Neurol; 1999 Mar; 156(1):33-49. PubMed ID: 10192775
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Subcutaneously implantable glucose sensors in patients with diabetes mellitus; still many problems].
    Gerritsen M; Jansen JA; Lutterman JA
    Ned Tijdschr Geneeskd; 2002 Jul; 146(28):1313-6. PubMed ID: 12148218
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Implantable Graphene-based Neural Electrode Interfaces for Electrophysiology and Neurochemistry in In Vivo Hyperacute Stroke Model.
    Liu TC; Chuang MC; Chu CY; Huang WC; Lai HY; Wang CT; Chu WL; Chen SY; Chen YY
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):187-96. PubMed ID: 26653098
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Local release of masitinib alters in vivo implantable continuous glucose sensor performance.
    Avula M; Jones D; Rao AN; McClain D; McGill LD; Grainger DW; Solzbacher F
    Biosens Bioelectron; 2016 Mar; 77():149-56. PubMed ID: 26402593
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Examining the inflammatory response to nanopatterned polydimethylsiloxane using organotypic brain slice methods.
    Ereifej ES; Cheng MM; Mao G; VandeVord PJ
    J Neurosci Methods; 2013 Jul; 217(1-2):17-25. PubMed ID: 23660527
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An unusual inflammatory response to implanted deep brain electrodes.
    Hughes PS; Krcek JP; Hobson DE; Del Bigio MR
    Can J Neurol Sci; 2011 Jan; 38(1):168-70. PubMed ID: 21156454
    [No Abstract]   [Full Text] [Related]  

  • 34. Brain microdialysis in exercise research.
    Meeusen R; Piacentini MF; De Meirleir K
    Sports Med; 2001; 31(14):965-83. PubMed ID: 11735681
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Peptide modification of polyimide-insulated microwires: Towards improved biocompatibility through reduced glial scarring.
    Sridar S; Churchward MA; Mushahwar VK; Todd KG; Elias AL
    Acta Biomater; 2017 Sep; 60():154-166. PubMed ID: 28735029
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Implantable optoelectronic probes for in vivo optogenetics.
    Iseri E; Kuzum D
    J Neural Eng; 2017 Jun; 14(3):031001. PubMed ID: 28198703
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Performance of the New BioMonitor 2-AF Insertable Cardiac Monitoring System: Can Better be Worse?
    Lacour P; Dang PL; Huemer M; Parwani AS; Attanasio P; Pieske B; Boldt LH; Haverkamp W; Blaschke F
    Pacing Clin Electrophysiol; 2017 May; 40(5):516-526. PubMed ID: 28220938
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Silicon/SU8 multi-electrode micro-needle for in vivo neurochemical monitoring.
    Vasylieva N; Marinesco S; Barbier D; Sabac A
    Biosens Bioelectron; 2015 Oct; 72():148-55. PubMed ID: 25978443
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Resveratrol protects neurons from cannulae implantation injury: implications for deep brain stimulation.
    Constant JP; Fraley GS; Forbes E; Hallas BH; Leheste JR; Torres G
    Neuroscience; 2012 Oct; 222():333-42. PubMed ID: 22796077
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biocompatibility of an enzyme-based, electrochemical glucose sensor for short-term implantation in the subcutis.
    Kvist PH; Iburg T; Aalbaek B; Gerstenberg M; Schoier C; Kaastrup P; Buch-Rasmussen T; Hasselager E; Jensen HE
    Diabetes Technol Ther; 2006 Oct; 8(5):546-59. PubMed ID: 17037969
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.