BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 29120607)

  • 1. The Emergence of Manganese-Based Carbonyl Hydrosilylation Catalysts.
    Trovitch RJ
    Acc Chem Res; 2017 Nov; 50(11):2842-2852. PubMed ID: 29120607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanistic Investigation of Bis(imino)pyridine Manganese Catalyzed Carbonyl and Carboxylate Hydrosilylation.
    Mukhopadhyay TK; Rock CL; Hong M; Ashley DC; Groy TL; Baik MH; Trovitch RJ
    J Am Chem Soc; 2017 Apr; 139(13):4901-4915. PubMed ID: 28282136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A highly active manganese precatalyst for the hydrosilylation of ketones and esters.
    Mukhopadhyay TK; Flores M; Groy TL; Trovitch RJ
    J Am Chem Soc; 2014 Jan; 136(3):882-5. PubMed ID: 24367998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Pentacoordinate Mn(II) Precatalyst That Exhibits Notable Aldehyde and Ketone Hydrosilylation Turnover Frequencies.
    Ghosh C; Mukhopadhyay TK; Flores M; Groy TL; Trovitch RJ
    Inorg Chem; 2015 Nov; 54(21):10398-406. PubMed ID: 26480233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation and hydrosilylation activity of a molybdenum carbonyl complex that features a pentadentate bis(imino)pyridine ligand.
    Pal R; Groy TL; Bowman AC; Trovitch RJ
    Inorg Chem; 2014 Sep; 53(17):9357-65. PubMed ID: 25139613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation of Mn(I) Compounds Featuring a Reduced Bis(imino)pyridine Chelate and Their Relevance to Electrocatalytic Hydrogen Production.
    Mukhopadhyay TK; MacLean NL; Flores M; Groy TL; Trovitch RJ
    Inorg Chem; 2018 May; 57(10):6065-6075. PubMed ID: 29738258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparing the Electronic Structure of Iron, Cobalt, and Nickel Compounds That Feature a Phosphine-Substituted Bis(imino)pyridine Chelate.
    Mena MR; Kim JH; So S; Ben-Daat H; Porter TM; Ghosh C; Sharma A; Flores M; Groy TL; Baik MH; Trovitch RJ
    Inorg Chem; 2022 May; 61(17):6438-6450. PubMed ID: 35438990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conversion of Carbon Dioxide to Methanol Using a C-H Activated Bis(imino)pyridine Molybdenum Hydroboration Catalyst.
    Pal R; Groy TL; Trovitch RJ
    Inorg Chem; 2015 Aug; 54(15):7506-15. PubMed ID: 26203595
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbonyl and ester C-O bond hydrosilylation using κ
    Rock CL; Groy TL; Trovitch RJ
    Dalton Trans; 2018 Jul; 47(26):8807-8816. PubMed ID: 29922802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation of a bis(imino)pyridine molybdenum(i) iodide complex through controlled reduction and interconversion of its reaction products.
    Pal R; Cherry BR; Flores M; Groy TL; Trovitch RJ
    Dalton Trans; 2016 Jun; 45(24):10024-33. PubMed ID: 27095635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nickel and iron pincer complexes as catalysts for the reduction of carbonyl compounds.
    Chakraborty S; Bhattacharya P; Dai H; Guan H
    Acc Chem Res; 2015 Jul; 48(7):1995-2003. PubMed ID: 26098431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Through the Looking Glass: Using the Lens of [SNS]-Pincer Ligands to Examine First-Row Metal Bifunctional Catalysts.
    Elsby MR; Baker RT
    Acc Chem Res; 2023 Apr; 56(7):798-809. PubMed ID: 36921212
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silica-Supported Mn
    Ghaffari B; Mendes-Burak J; Chan KW; Copéret C
    Chemistry; 2019 Nov; 25(61):13869-13873. PubMed ID: 31465589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon Dioxide Promoted H(+) Reduction Using a Bis(imino)pyridine Manganese Electrocatalyst.
    Mukhopadhyay TK; MacLean NL; Gan L; Ashley DC; Groy TL; Baik MH; Jones AK; Trovitch RJ
    Inorg Chem; 2015 May; 54(9):4475-82. PubMed ID: 25901758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of Selectivity through Synergy between Catalysts, Silanes and Reaction Conditions in Cobalt-Catalyzed Hydrosilylation of Dienes and Terminal Alkenes.
    Raya B; Jing S; RajanBabu TV
    ACS Catal; 2017 Apr; 7(4):2275-2283. PubMed ID: 28593082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new anthraquinoid ligand for the iron-catalyzed hydrosilylation of carbonyl compounds at room temperature: new insights and kinetics.
    Raya-Barón Á; Galdeano-Ruano CP; Oña-Burgos P; Rodríguez-Diéguez A; Langer R; López-Ruiz R; Romero-González R; Kuzu I; Fernández I
    Dalton Trans; 2018 May; 47(21):7272-7281. PubMed ID: 29766169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iron- and Cobalt-Catalyzed Alkene Hydrogenation: Catalysis with Both Redox-Active and Strong Field Ligands.
    Chirik PJ
    Acc Chem Res; 2015 Jun; 48(6):1687-95. PubMed ID: 26042837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A β-diketiminate manganese catalyst for alkene hydrosilylation: substrate scope, silicone preparation, and mechanistic insight.
    Mukhopadhyay TK; Flores M; Groy TL; Trovitch RJ
    Chem Sci; 2018 Oct; 9(39):7673-7680. PubMed ID: 30393528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nickamine and Analogous Nickel Pincer Catalysts for Cross-Coupling of Alkyl Halides and Hydrosilylation of Alkenes.
    Shi R; Zhang Z; Hu X
    Acc Chem Res; 2019 May; 52(5):1471-1483. PubMed ID: 31008581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and electronic structure of cationic, neutral, and anionic bis(imino)pyridine iron alkyl complexes: evaluation of redox activity in single-component ethylene polymerization catalysts.
    Tondreau AM; Milsmann C; Patrick AD; Hoyt HM; Lobkovsky E; Wieghardt K; Chirik PJ
    J Am Chem Soc; 2010 Oct; 132(42):15046-59. PubMed ID: 20882992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.