BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 29120614)

  • 1. Connecting the Elementary Reaction Pathways of Criegee Intermediates to the Chemical Erosion of Squalene Interfaces during Ozonolysis.
    Heine N; Houle FA; Wilson KR
    Environ Sci Technol; 2017 Dec; 51(23):13740-13748. PubMed ID: 29120614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiphase Mechanism for the Production of Sulfuric Acid from SO
    Heine N; Arata C; Goldstein AH; Houle FA; Wilson KR
    J Phys Chem Lett; 2018 Jun; 9(12):3504-3510. PubMed ID: 29883127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heterogeneous Ozonolysis of Squalene: Gas-Phase Products Depend on Water Vapor Concentration.
    Arata C; Heine N; Wang N; Misztal PK; Wargocki P; Bekö G; Williams J; Nazaroff WW; Wilson KR; Goldstein AH
    Environ Sci Technol; 2019 Dec; 53(24):14441-14448. PubMed ID: 31757120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics and Products from Heterogeneous Oxidation of Squalene with Ozone.
    Zhou S; Forbes MW; Abbatt JP
    Environ Sci Technol; 2016 Nov; 50(21):11688-11697. PubMed ID: 27668450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterogeneous oxidation of squalene film by ozone under various indoor conditions.
    Petrick L; Dubowski Y
    Indoor Air; 2009 Oct; 19(5):381-91. PubMed ID: 19500173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics and Condensed-Phase Products in Multiphase Ozonolysis of an Unsaturated Triglyceride.
    Zhou Z; Zhou S; Abbatt JPD
    Environ Sci Technol; 2019 Nov; 53(21):12467-12475. PubMed ID: 31600435
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling consortium for chemistry of indoor environments (MOCCIE): integrating chemical processes from molecular to room scales.
    Shiraiwa M; Carslaw N; Tobias DJ; Waring MS; Rim D; Morrison G; Lakey PSJ; Kruza M; von Domaros M; Cummings BE; Won Y
    Environ Sci Process Impacts; 2019 Aug; 21(8):1240-1254. PubMed ID: 31070639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiphase Ozonolysis of Oleic Acid-Based Lipids: Quantitation of Major Products and Kinetic Multilayer Modeling.
    Zhou Z; Lakey PSJ; von Domaros M; Wise N; Tobias DJ; Shiraiwa M; Abbatt JPD
    Environ Sci Technol; 2022 Jun; 56(12):7716-7728. PubMed ID: 35671499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical kinetics of multiphase reactions between ozone and human skin lipids: Implications for indoor air quality and health effects.
    Lakey PSJ; Wisthaler A; Berkemeier T; Mikoviny T; Pöschl U; Shiraiwa M
    Indoor Air; 2017 Jul; 27(4):816-828. PubMed ID: 27943451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new mechanism for ozonolysis of unsaturated organics on solids: phosphocholines on NaCl as a model for sea salt particles.
    Karagulian F; Scott Lea A; Dilbeck CW; Finlayson-Pitts BJ
    Phys Chem Chem Phys; 2008 Jan; 10(4):528-41. PubMed ID: 18183314
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of sub-zero temperature on the formation and composition of secondary organic aerosol from ozonolysis of alpha-pinene.
    Kristensen K; Jensen LN; Glasius M; Bilde M
    Environ Sci Process Impacts; 2017 Oct; 19(10):1220-1234. PubMed ID: 28805852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reactions and Products of Squalene and Ozone: A Review.
    Coffaro B; Weisel CP
    Environ Sci Technol; 2022 Jun; 56(12):7396-7411. PubMed ID: 35648815
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient Coupling of Reaction Pathways of Criegee Intermediates and Free Radicals in the Heterogeneous Ozonolysis of Alkenes.
    Zeng M; Wilson KR
    J Phys Chem Lett; 2020 Aug; 11(16):6580-6585. PubMed ID: 32787230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ozonolysis of oleic acid particles: evidence for a surface reaction and secondary reactions involving Criegee intermediates.
    Hearn JD; Lovett AJ; Smith GD
    Phys Chem Chem Phys; 2005 Feb; 7(3):501-11. PubMed ID: 19785136
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiphase Ozonolysis of Aqueous α-Terpineol.
    Leviss DH; Van Ry DA; Hinrichs RZ
    Environ Sci Technol; 2016 Nov; 50(21):11698-11705. PubMed ID: 27680201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing the Heterogeneous Ozonolysis of Squalene Nanoparticles by Photoemission.
    Jacobs MI; Xu B; Kostko O; Heine N; Ahmed M; Wilson KR
    J Phys Chem A; 2016 Nov; 120(43):8645-8656. PubMed ID: 27748598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impacts of SO
    Zhang P; Chen T; Liu J; Liu C; Ma J; Ma Q; Chu B; He H
    Environ Sci Technol; 2019 Aug; 53(15):8845-8853. PubMed ID: 31298843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization and Quantification of Particle-Bound Criegee Intermediates in Secondary Organic Aerosol.
    Campbell SJ; Wolfer K; Gallimore PJ; Giorio C; Häussinger D; Boillat MA; Kalberer M
    Environ Sci Technol; 2022 Sep; 56(18):12945-12954. PubMed ID: 36054832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. QM/MM studies on ozonolysis of α-humulene and Criegee reactions with acids and water at air-water/acetonitrile interfaces.
    Xiao P; Yang JJ; Fang WH; Cui G
    Phys Chem Chem Phys; 2018 Jun; 20(23):16138-16150. PubMed ID: 29854994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radical Generation from the Gas-Phase Activation of Ionized Lipid Ozonides.
    Ellis SR; Pham HT; In Het Panhuis M; Trevitt AJ; Mitchell TW; Blanksby SJ
    J Am Soc Mass Spectrom; 2017 Jul; 28(7):1345-1358. PubMed ID: 28484972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.