These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Transcriptional regulation of abscisic acid biosynthesis and signal transduction, and anthocyanin biosynthesis in 'Bluecrop' highbush blueberry fruit during ripening. Chung SW; Yu DJ; Oh HD; Ahn JH; Huh JH; Lee HJ PLoS One; 2019; 14(7):e0220015. PubMed ID: 31318958 [TBL] [Abstract][Full Text] [Related]
3. Changes in the abscisic acid levels and related gene expression during fruit development and ripening in bilberry (Vaccinium myrtillus L.). Karppinen K; Hirvelä E; Nevala T; Sipari N; Suokas M; Jaakola L Phytochemistry; 2013 Nov; 95():127-34. PubMed ID: 23850079 [TBL] [Abstract][Full Text] [Related]
4. Full-length fruit transcriptomes of southern highbush (Vaccinium sp.) and rabbiteye (V. virgatum Ait.) blueberry. Wang YW; Nambeesan SU BMC Genomics; 2022 Oct; 23(1):733. PubMed ID: 36309640 [TBL] [Abstract][Full Text] [Related]
5. Fruit quality, anthocyanin and total phenolic contents, and antioxidant activities of 45 blueberry cultivars grown in Suwon, Korea. Kim JG; Kim HL; Kim SJ; Park KS J Zhejiang Univ Sci B; 2013 Sep; 14(9):793-9. PubMed ID: 24009199 [TBL] [Abstract][Full Text] [Related]
6. Gene expression and metabolite profiling of developing highbush blueberry fruit indicates transcriptional regulation of flavonoid metabolism and activation of abscisic acid metabolism. Zifkin M; Jin A; Ozga JA; Zaharia LI; Schernthaner JP; Gesell A; Abrams SR; Kennedy JA; Constabel CP Plant Physiol; 2012 Jan; 158(1):200-24. PubMed ID: 22086422 [TBL] [Abstract][Full Text] [Related]
7. Transcriptome Analysis Revealed the Mechanism by Which Exogenous ABA Increases Anthocyanins in Blueberry Fruit During Veraison. Han T; Wu W; Li W Front Plant Sci; 2021; 12():758215. PubMed ID: 34858461 [TBL] [Abstract][Full Text] [Related]
8. Abscisic Acid Regulates Anthocyanin Biosynthesis and Gene Expression Associated With Cell Wall Modification in Ripening Bilberry ( Karppinen K; Tegelberg P; Häggman H; Jaakola L Front Plant Sci; 2018; 9():1259. PubMed ID: 30210522 [TBL] [Abstract][Full Text] [Related]
9. ABA mediates development-dependent anthocyanin biosynthesis and fruit coloration in Lycium plants. Li G; Zhao J; Qin B; Yin Y; An W; Mu Z; Cao Y BMC Plant Biol; 2019 Jul; 19(1):317. PubMed ID: 31307384 [TBL] [Abstract][Full Text] [Related]
10. Molecular mechanism of abscisic acid signaling response factor VcbZIP55 to promote anthocyanin biosynthesis in blueberry (Vaccinium corymbosum). Tang Q; Wang X; Ma S; Fan S; Chi F; Song Y Plant Physiol Biochem; 2024 May; 210():108611. PubMed ID: 38615439 [TBL] [Abstract][Full Text] [Related]
11. Anthocyanin Profile in Berries of Wild and Cultivated Vaccinium spp. along Altitudinal Gradients in the Alps. Zoratti L; Jaakola L; Häggman H; Giongo L J Agric Food Chem; 2015 Oct; 63(39):8641-50. PubMed ID: 26373665 [TBL] [Abstract][Full Text] [Related]
12. Ethylene promotes fruit ripening initiation by downregulating photosynthesis, enhancing abscisic acid and suppressing jasmonic acid in blueberry (Vaccinium ashei). Wang YW; Nambeesan SU BMC Plant Biol; 2024 May; 24(1):418. PubMed ID: 38760720 [TBL] [Abstract][Full Text] [Related]
13. Influence of production systems on phenolic characteristics and antioxidant capacity of highbush blueberry cultivars. Jung YS; Kwak IA; Lee SG; Cho HS; Cho YS; Kim DO J Food Sci; 2021 Jul; 86(7):2949-2961. PubMed ID: 34146400 [TBL] [Abstract][Full Text] [Related]
14. Effect of sodium nitroprusside on antioxidative enzymes and the phenylpropanoid pathway in blueberry fruit. Ge Y; Li X; Li C; Tang Q; Duan B; Cheng Y; Hou J; Li J Food Chem; 2019 Oct; 295():607-612. PubMed ID: 31174802 [TBL] [Abstract][Full Text] [Related]
15. Identification and Characterization of MYB-bHLH-WD40 Regulatory Complex Members Controlling Anthocyanidin Biosynthesis in Blueberry Fruits Development. Zhao M; Li J; Zhu L; Chang P; Li L; Zhang L Genes (Basel); 2019 Jun; 10(7):. PubMed ID: 31261791 [TBL] [Abstract][Full Text] [Related]
16. Exogenous strigolactone interacts with abscisic acid-mediated accumulation of anthocyanins in grapevine berries. Ferrero M; Pagliarani C; Novák O; Ferrandino A; Cardinale F; Visentin I; Schubert A J Exp Bot; 2018 Apr; 69(9):2391-2401. PubMed ID: 29401281 [TBL] [Abstract][Full Text] [Related]
17. High performance liquid chromatography analysis of anthocyanins in bilberries (Vaccinium myrtillus L.), blueberries (Vaccinium corymbosum L.), and corresponding juices. Müller D; Schantz M; Richling E J Food Sci; 2012 Apr; 77(4):C340-5. PubMed ID: 22394068 [TBL] [Abstract][Full Text] [Related]
18. Characterization of the hot pepper (Capsicum frutescens) fruit ripening regulated by ethylene and ABA. Hou BZ; Li CL; Han YY; Shen YY BMC Plant Biol; 2018 Aug; 18(1):162. PubMed ID: 30097017 [TBL] [Abstract][Full Text] [Related]
19. PacCYP707A2 negatively regulates cherry fruit ripening while PacCYP707A1 mediates drought tolerance. Li Q; Chen P; Dai S; Sun Y; Yuan B; Kai W; Pei Y; He S; Liang B; Zhang Y; Leng P J Exp Bot; 2015 Jul; 66(13):3765-74. PubMed ID: 25956880 [TBL] [Abstract][Full Text] [Related]
20. Physiological response of anthocyanin synthesis to different light intensities in blueberry. An X; Tan T; Song Z; Guo X; Zhang X; Zhu Y; Wang D PLoS One; 2023; 18(6):e0283284. PubMed ID: 37352171 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]