These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 29121067)

  • 1. High yields of hydrogen production from methanol steam reforming with a cross-U type reactor.
    Zhang S; Zhang Y; Chen J; Zhang X; Liu X
    PLoS One; 2017; 12(11):e0187802. PubMed ID: 29121067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A MEMS methanol reformer heated by decomposition of hydrogen peroxide.
    Kim T; Hwang JS; Kwon S
    Lab Chip; 2007 Jul; 7(7):835-41. PubMed ID: 17594001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and operation performance of the plate-heat transfer type hydrogen production reactor for bio-methanol reforming.
    Liu H; Li Y; Lu C; Zhang Z; Xiang G; Yang X; Zhang Q
    Bioresour Technol; 2023 Oct; 386():129509. PubMed ID: 37473786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of flexible micro temperature sensor in oxidative steam reforming by a methanol micro reformer.
    Lee CY; Lee SJ; Shen CC; Yeh CT; Chang CC; Lo YM
    Sensors (Basel); 2011; 11(2):2246-56. PubMed ID: 22319407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Practical achievements on biomass steam gasification in a rotary tubular coiled-downdraft reactor.
    Andrew R; Gokak DT; Sharma P; Gupta S
    Waste Manag Res; 2016 Dec; 34(12):1268-1274. PubMed ID: 27495911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stabilization of Hydrogen Production via Methanol Steam Reforming in Microreactor by Al2O3 Nano-Film Enhanced Catalyst Adhesion.
    Jeong H; Na JG; Jang MS; Ko CH
    J Nanosci Nanotechnol; 2016 May; 16(5):4393-8. PubMed ID: 27483762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance Analysis of a Proton Exchange Membrane Fuel Cell Based Syngas.
    Zhang X; Lin Q; Liu H; Chen X; Su S; Ni M
    Entropy (Basel); 2019 Jan; 21(1):. PubMed ID: 33266801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogen production via aqueous-phase reforming for high-temperature proton exchange membrane fuel cells - a review.
    Lakhtaria P; Ribeirinha P; Huhtinen W; Viik S; Sousa J; Mendes A
    Open Res Eur; 2021; 1():81. PubMed ID: 37645145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CFD Modeling of Methanol to Light Olefins in a Sodalite Membrane Reactor using SAPO-34 Catalyst with
    Aghaeinejad-Meybodi A; Mousavi SM; Shahabi AA; Kakroudi MR
    Comb Chem High Throughput Screen; 2021; 24(4):559-569. PubMed ID: 32819228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single Step Bi-reforming and Oxidative Bi-reforming of Methane (Natural Gas) with Steam and Carbon Dioxide to Metgas (CO-2H2) for Methanol Synthesis: Self-Sufficient Effective and Exclusive Oxygenation of Methane to Methanol with Oxygen.
    Olah GA; Goeppert A; Czaun M; Mathew T; May RB; Prakash GK
    J Am Chem Soc; 2015 Jul; 137(27):8720-9. PubMed ID: 26086090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Producing hydrogen by catalytic steam reforming of methanol using non-noble metal catalysts.
    Deng Y; Li S; Appels L; Dewil R; Zhang H; Baeyens J; Mikulcic H
    J Environ Manage; 2022 Nov; 321():116019. PubMed ID: 36029634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High purity H2 by sorption-enhanced chemical looping reforming of waste cooking oil in a packed bed reactor.
    Pimenidou P; Rickett G; Dupont V; Twigg MV
    Bioresour Technol; 2010 Dec; 101(23):9279-86. PubMed ID: 20655199
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Progress in Methanol Steam Reforming Modelling via Membrane Reactors Technology.
    Iulianelli A; Ghasemzadeh K; Basile A
    Membranes (Basel); 2018 Aug; 8(3):. PubMed ID: 30126137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Swiss-Roll-Type Methanol Mini-Steam Reformer for Hydrogen Generation with High Efficiency and Long-Term Durability.
    Tseng FG; Chiu WC; Huang PJ
    Micromachines (Basel); 2023 Sep; 14(10):. PubMed ID: 37893282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogen production from glucose and sorbitol by sorption-enhanced steam reforming: challenges and promises.
    He L; Chen D
    ChemSusChem; 2012 Mar; 5(3):587-95. PubMed ID: 22378630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modelling of packed bed and coated wall microreactors for methanol steam reforming for hydrogen production.
    Hafeez S; Aristodemou E; Manos G; Al-Salem SM; Constantinou A
    RSC Adv; 2020 Nov; 10(68):41680-41692. PubMed ID: 35516550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of the reforming reagents and fuel species on tar reforming reaction.
    Wang Y; Namioka T; Yoshikawa K
    Bioresour Technol; 2009 Dec; 100(24):6610-4. PubMed ID: 19665371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integration of Methane Steam Reforming and Water Gas Shift Reaction in a Pd/Au/Pd-Based Catalytic Membrane Reactor for Process Intensification.
    Castro-Dominguez B; Mardilovich IP; Ma LC; Ma R; Dixon AG; Kazantzis NK; Ma YH
    Membranes (Basel); 2016 Sep; 6(3):. PubMed ID: 27657143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalysts for Hydrogen Generation via Oxy-Steam Reforming of Methanol Process.
    Mosińska M; Szynkowska-Jóźwik MI; Mierczyński P
    Materials (Basel); 2020 Dec; 13(24):. PubMed ID: 33302526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular-scale perspective of water-catalyzed methanol dehydrogenation to formaldehyde.
    Boucher MB; Marcinkowski MD; Liriano ML; Murphy CJ; Lewis EA; Jewell AD; Mattera MF; Kyriakou G; Flytzani-Stephanopoulos M; Sykes EC
    ACS Nano; 2013 Jul; 7(7):6181-7. PubMed ID: 23746268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.