BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 29121083)

  • 21. Dual-Specificity Phosphatase Regulation in Neurons and Glial Cells.
    Pérez-Sen R; Queipo MJ; Gil-Redondo JC; Ortega F; Gómez-Villafuertes R; Miras-Portugal MT; Delicado EG
    Int J Mol Sci; 2019 Apr; 20(8):. PubMed ID: 31018603
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Blockade of dual-specificity phosphatase 28 decreases chemo-resistance and migration in human pancreatic cancer cells.
    Lee J; Hun Yun J; Lee J; Choi C; Hoon Kim J
    Sci Rep; 2015 Jul; 5():12296. PubMed ID: 26212664
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Two intermediate states of the conformational switch in dual specificity phosphatase 13a.
    Wei CH; Min HG; Kim M; Kim GH; Chun HJ; Ryu SE
    Pharmacol Res; 2018 Feb; 128():211-219. PubMed ID: 29106959
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dual-specificity phosphatases as molecular targets for inhibition in human disease.
    Ríos P; Nunes-Xavier CE; Tabernero L; Köhn M; Pulido R
    Antioxid Redox Signal; 2014 May; 20(14):2251-73. PubMed ID: 24206177
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The emerging roles of dual-specificity phosphatases and their specific characteristics in human cancer.
    Gao PP; Qi XW; Sun N; Sun YY; Zhang Y; Tan XN; Ding J; Han F; Zhang Y
    Biochim Biophys Acta Rev Cancer; 2021 Aug; 1876(1):188562. PubMed ID: 33964330
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A novel phosphatase family, structurally related to dual-specificity phosphatases, that displays unique amino acid sequence and substrate specificity.
    Romá-Mateo C; Ríos P; Tabernero L; Attwood TK; Pulido R
    J Mol Biol; 2007 Dec; 374(4):899-909. PubMed ID: 17976645
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dual Specificity Phosphatases: From Molecular Mechanisms to Biological Function.
    Pulido R; Lang R
    Int J Mol Sci; 2019 Sep; 20(18):. PubMed ID: 31489884
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Overproduction, purification and structure determination of human dual-specificity phosphatase 14.
    Lountos GT; Tropea JE; Cherry S; Waugh DS
    Acta Crystallogr D Biol Crystallogr; 2009 Oct; 65(Pt 10):1013-20. PubMed ID: 19770498
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Review of DUSP26: Structure, Regulation and Relevance in Human Disease.
    Thompson EM; Stoker AW
    Int J Mol Sci; 2021 Jan; 22(2):. PubMed ID: 33466673
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Crystal structure of human protein tyrosine phosphatase 1B.
    Barford D; Flint AJ; Tonks NK
    Science; 1994 Mar; 263(5152):1397-404. PubMed ID: 8128219
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural analysis of human dual-specificity phosphatase 22 complexed with a phosphotyrosine-like substrate.
    Lountos GT; Cherry S; Tropea JE; Waugh DS
    Acta Crystallogr F Struct Biol Commun; 2015 Feb; 71(Pt 2):199-205. PubMed ID: 25664796
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The dual specificity phosphatase transcriptome of the murine thymus.
    Tanzola MB; Kersh GJ
    Mol Immunol; 2006 Feb; 43(6):754-62. PubMed ID: 16360020
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Drosophila DUSP puckered is phosphorylated by JNK and p38 in response to arsenite-induced oxidative stress.
    Karkali K; Panayotou G
    Biochem Biophys Res Commun; 2012 Feb; 418(2):301-6. PubMed ID: 22266315
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural basis for the dephosphorylating activity of PTPRQ towards phosphatidylinositide substrates.
    Yu KR; Kim YJ; Jung SK; Ku B; Park H; Cho SY; Jung H; Chung SJ; Bae KH; Lee SC; Kim BY; Erikson RL; Ryu SE; Kim SJ
    Acta Crystallogr D Biol Crystallogr; 2013 Aug; 69(Pt 8):1522-9. PubMed ID: 23897475
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A distinct interaction mode revealed by the crystal structure of the kinase p38α with the MAPK binding domain of the phosphatase MKP5.
    Zhang YY; Wu JW; Wang ZX
    Sci Signal; 2011 Dec; 4(204):ra88. PubMed ID: 22375048
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Insight into the redox regulation of the phosphoglucan phosphatase SEX4 involved in starch degradation.
    Silver DM; Silva LP; Issakidis-Bourguet E; Glaring MA; Schriemer DC; Moorhead GB
    FEBS J; 2013 Jan; 280(2):538-48. PubMed ID: 22372537
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Crystal structure of the ALK (anaplastic lymphoma kinase) catalytic domain.
    Lee CC; Jia Y; Li N; Sun X; Ng K; Ambing E; Gao MY; Hua S; Chen C; Kim S; Michellys PY; Lesley SA; Harris JL; Spraggon G
    Biochem J; 2010 Sep; 430(3):425-37. PubMed ID: 20632993
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural basis for the glucan phosphatase activity of Starch Excess4.
    Vander Kooi CW; Taylor AO; Pace RM; Meekins DA; Guo HF; Kim Y; Gentry MS
    Proc Natl Acad Sci U S A; 2010 Aug; 107(35):15379-84. PubMed ID: 20679247
    [TBL] [Abstract][Full Text] [Related]  

  • 39. DUSPs, to MAP kinases and beyond.
    Huang CY; Tan TH
    Cell Biosci; 2012 Jul; 2(1):24. PubMed ID: 22769588
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure of the hematopoietic tyrosine phosphatase (HePTP) catalytic domain: structure of a KIM phosphatase with phosphate bound at the active site.
    Mustelin T; Tautz L; Page R
    J Mol Biol; 2005 Nov; 354(1):150-63. PubMed ID: 16226275
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.