BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 29121083)

  • 41. Molecular identification and functional characterization of a Drosophila dual-specificity phosphatase DMKP-4 which is involved in PGN-induced activation of the JNK pathway.
    Sun L; Yu MC; Kong L; Zhuang ZH; Hu JH; Ge BX
    Cell Signal; 2008 Jul; 20(7):1329-37. PubMed ID: 18456458
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Structural mechanisms of plant glucan phosphatases in starch metabolism.
    Meekins DA; Vander Kooi CW; Gentry MS
    FEBS J; 2016 Jul; 283(13):2427-47. PubMed ID: 26934589
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ligand binding reduces conformational flexibility in the active site of tyrosine phosphatase related to biofilm formation A (TpbA) from Pseudomonasaeruginosa.
    Koveal D; Clarkson MW; Wood TK; Page R; Peti W
    J Mol Biol; 2013 Jun; 425(12):2219-31. PubMed ID: 23524133
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Dynamics of Dual Specificity Phosphatases and Their Interplay with Protein Kinases in Immune Signaling.
    Subbannayya Y; Pinto SM; Bösl K; Prasad TSK; Kandasamy RK
    Int J Mol Sci; 2019 Apr; 20(9):. PubMed ID: 31035605
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Electrostatic evaluation of the signature motif (H/V)CX5R(S/T) in protein-tyrosine phosphatases.
    Peters GH; Frimurer TM; Olsen OH
    Biochemistry; 1998 Apr; 37(16):5383-93. PubMed ID: 9548920
    [TBL] [Abstract][Full Text] [Related]  

  • 46. MKP-2: out of the DUSP-bin and back into the limelight.
    Lawan A; Torrance E; Al-Harthi S; Shweash M; Alnasser S; Neamatallah T; Schroeder J; Plevin R
    Biochem Soc Trans; 2012 Feb; 40(1):235-9. PubMed ID: 22260697
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Crystal structure of SP-PTP, a low molecular weight protein tyrosine phosphatase from Streptococcus pyogenes.
    Ku B; Keum CW; Lee HS; Yun HY; Shin HC; Kim BY; Kim SJ
    Biochem Biophys Res Commun; 2016 Sep; 478(3):1217-22. PubMed ID: 27545603
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Structure of human PIR1, an atypical dual-specificity phosphatase.
    Sankhala RS; Lokareddy RK; Cingolani G
    Biochemistry; 2014 Feb; 53(5):862-71. PubMed ID: 24447265
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The MAPK dual specific phosphatase (DUSP) proteins: A versatile wrestler in T cell functionality.
    Sun F; Yue TT; Yang CL; Wang FX; Luo JH; Rong SJ; Zhang M; Guo Y; Xiong F; Wang CY
    Int Immunopharmacol; 2021 Sep; 98():107906. PubMed ID: 34198238
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Crystal structure of a novel mitogen-activated protein kinase phosphatase, SKRP1.
    Wei CH; Ryu SY; Jeon YH; Yoon MY; Jeong DG; Kim SJ; Ryu SE
    Proteins; 2011 Nov; 79(11):3242-6. PubMed ID: 21989941
    [No Abstract]   [Full Text] [Related]  

  • 51. Dual-specificity phosphatase 18 modulates the SUMOylation and aggregation of Ataxin-1.
    Ryu J; Lee DH
    Biochem Biophys Res Commun; 2018 Jul; 502(3):389-396. PubMed ID: 29852174
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Network analysis of DUSP12 partners in the nucleus under genotoxic stress.
    Monteiro LF; Forti FL
    J Proteomics; 2019 Apr; 197():42-52. PubMed ID: 30779967
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Dual-specificity phosphatases in mental and neurological disorders.
    An N; Bassil K; Al Jowf GI; Steinbusch HWM; Rothermel M; de Nijs L; Rutten BPF
    Prog Neurobiol; 2021 Mar; 198():101906. PubMed ID: 32905807
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Crystal structure of the catalytic subunit of human protein phosphatase 1 and its complex with tungstate.
    Egloff MP; Cohen PT; Reinemer P; Barford D
    J Mol Biol; 1995 Dec; 254(5):942-59. PubMed ID: 7500362
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Phosphorylation of the M3/6 dual-specificity phosphatase enhances the activation of JNK by arsenite.
    Cotsiki M; Oehrl W; Samiotaki M; Theodosiou A; Panayotou G
    Cell Signal; 2012 Mar; 24(3):664-76. PubMed ID: 22100391
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Crystal structure of the MAPK phosphatase Pyst1 catalytic domain and implications for regulated activation.
    Stewart AE; Dowd S; Keyse SM; McDonald NQ
    Nat Struct Biol; 1999 Feb; 6(2):174-81. PubMed ID: 10048930
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Characterization of myeloid-specific peroxidase, keratin 8, and dual specificity phosphatase 1 as innate immune genes involved in the resistance of crucian carp (Carassius auratus gibelio) to Cyprinid herpesvirus 2 infection.
    Podok P; Wang H; Xu L; Xu D; Lu L
    Fish Shellfish Immunol; 2014 Dec; 41(2):531-40. PubMed ID: 25312688
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Determinants for substrate specificity of the bacterial PP2C protein phosphatase tPphA from Thermosynechococcus elongatus.
    Su J; Forchhammer K
    FEBS J; 2013 Jan; 280(2):694-707. PubMed ID: 22212593
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Trimeric structure of PRL-1 phosphatase reveals an active enzyme conformation and regulation mechanisms.
    Jeong DG; Kim SJ; Kim JH; Son JH; Park MR; Lim SM; Yoon TS; Ryu SE
    J Mol Biol; 2005 Jan; 345(2):401-13. PubMed ID: 15571731
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Crystal structure of cold-active protein-tyrosine phosphatase from a psychrophile, Shewanella sp.
    Tsuruta H; Mikami B; Aizono Y
    J Biochem; 2005 Jan; 137(1):69-77. PubMed ID: 15713885
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.