These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 29121085)

  • 1. Biomechanical simulation of vocal fold dynamics in adults based on laryngeal high-speed videoendoscopy.
    Döllinger M; Gómez P; Patel RR; Alexiou C; Bohr C; Schützenberger A
    PLoS One; 2017; 12(11):e0187486. PubMed ID: 29121085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computation of physiological human vocal fold parameters by mathematical optimization of a biomechanical model.
    Yang A; Stingl M; Berry DA; Lohscheller J; Voigt D; Eysholdt U; Dollinger M
    J Acoust Soc Am; 2011 Aug; 130(2):948-64. PubMed ID: 21877808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adductory Vocal Fold Kinematic Trajectories During Conventional Versus High-Speed Videoendoscopy.
    Diaz-Cadiz M; McKenna VS; Vojtech JM; Stepp CE
    J Speech Lang Hear Res; 2019 Jun; 62(6):1685-1706. PubMed ID: 31181175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional biomechanical properties of human vocal folds: parameter optimization of a numerical model to match in vitro dynamics.
    Yang A; Berry DA; Kaltenbacher M; Döllinger M
    J Acoust Soc Am; 2012 Feb; 131(2):1378-90. PubMed ID: 22352511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Nebulization on Laryngeal Parameters: Analysis Using High-Speed Digital Videolaryngoscopy.
    Plec EMRL; Côrtes Gama AC; Souza BO; Santos MAR
    J Voice; 2024 Jul; 38(4):970.e1-970.e12. PubMed ID: 35288013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthetic, multi-layer, self-oscillating vocal fold model fabrication.
    Murray PR; Thomson SL
    J Vis Exp; 2011 Dec; (58):. PubMed ID: 22157812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatio-temporal quantification of vocal fold vibrations using high-speed videoendoscopy and a biomechanical model.
    Schwarz R; Döllinger M; Wurzbacher T; Eysholdt U; Lohscheller J
    J Acoust Soc Am; 2008 May; 123(5):2717-32. PubMed ID: 18529190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vibration parameter extraction from endoscopic image series of the vocal folds.
    Döllinger M; Hoppe U; Hettlich F; Lohscheller J; Schuberth S; Eysholdt U
    IEEE Trans Biomed Eng; 2002 Aug; 49(8):773-81. PubMed ID: 12148815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulations of temporal patterns of oral airflow in men and women using a two-mass model of the vocal folds under dynamic control.
    Lucero JC; Koenig LL
    J Acoust Soc Am; 2005 Mar; 117(3 Pt 1):1362-72. PubMed ID: 15807024
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laryngeal High-Speed Videoendoscopy with Laser Illumination: A Preliminary Report.
    Malinowski J; Niebudek-Bogusz E; Just M; Morawska J; Racino A; Hoffman J; Barańska M; Kowalczyk MM; Pietruszewska W
    Otolaryngol Pol; 2021 Sep; 75(6):1-10. PubMed ID: 35175220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laryngeal biomechanics: an overview of mucosal wave mechanics.
    Berke GS; Gerratt BR
    J Voice; 1993 Jun; 7(2):123-8. PubMed ID: 8353625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Geometry of human vocal folds and glottal channel for mathematical and biomechanical modeling of voice production.
    Sidlof P; Svec JG; Horácek J; Veselý J; Klepácek I; Havlík R
    J Biomech; 2008; 41(5):985-95. PubMed ID: 18289553
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physical parameter estimation from porcine ex vivo vocal fold dynamics in an inverse problem framework.
    Gómez P; Schützenberger A; Kniesburges S; Bohr C; Döllinger M
    Biomech Model Mechanobiol; 2018 Jun; 17(3):777-792. PubMed ID: 29230589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling the biomechanical influence of epilaryngeal stricture on the vocal folds: a low-dimensional model of vocal-ventricular fold coupling.
    Moisik SR; Esling JH
    J Speech Lang Hear Res; 2014 Apr; 57(2):S687-704. PubMed ID: 24687007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectral analysis of digital kymography in normal adult vocal fold vibration.
    Chen W; Woo P; Murry T
    J Voice; 2014 May; 28(3):356-61. PubMed ID: 24412039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Principal dimensions of voice production and their role in vocal expression.
    Zhang Z
    J Acoust Soc Am; 2024 Jul; 156(1):278-283. PubMed ID: 38980102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vocal fold contact pressure in a three-dimensional body-cover phonation model.
    Zhang Z
    J Acoust Soc Am; 2019 Jul; 146(1):256. PubMed ID: 31370600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vibratory Onset of Adductor Spasmodic Dysphonia and Muscle Tension Dysphonia: A High-Speed Video Study✰.
    Chen W; Woo P; Murry T
    J Voice; 2020 Jul; 34(4):598-603. PubMed ID: 30595236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of spatial camera resolution in high-speed videoendoscopy on laryngeal parameters.
    Schlegel P; Kunduk M; Stingl M; Semmler M; Döllinger M; Bohr C; Schützenberger A
    PLoS One; 2019; 14(4):e0215168. PubMed ID: 31009488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of phonatory characteristics using ex vivo rabbit larynges.
    Döllinger M; Kniesburges S; Berry DA; Birk V; Wendler O; Dürr S; Alexiou C; Schützenberger A
    J Acoust Soc Am; 2018 Jul; 144(1):142. PubMed ID: 30075689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.