These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 29121168)

  • 1. δ-Tocopherol inhibits the development of prostate adenocarcinoma in prostate specific Pten-/- mice.
    Wang H; Yang X; Liu A; Wang G; Bosland MC; Yang CS
    Carcinogenesis; 2018 Feb; 39(2):158-169. PubMed ID: 29121168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. δ-Tocopherol inhibits receptor tyrosine kinase-induced AKT activation in prostate cancer cells.
    Wang H; Hong J; Yang CS
    Mol Carcinog; 2016 Nov; 55(11):1728-1738. PubMed ID: 26465359
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Depletion of SAG/RBX2 E3 ubiquitin ligase suppresses prostate tumorigenesis via inactivation of the PI3K/AKT/mTOR axis.
    Tan M; Xu J; Siddiqui J; Feng F; Sun Y
    Mol Cancer; 2016 Dec; 15(1):81. PubMed ID: 27955654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. δ-Tocotrienol is the Most Potent Vitamin E Form in Inhibiting Prostate Cancer Cell Growth and Inhibits Prostate Carcinogenesis in Ptenp-/- Mice.
    Wang H; Yan W; Sun Y; Yang CS
    Cancer Prev Res (Phila); 2022 Apr; 15(4):233-245. PubMed ID: 35144931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dietary tocopherols inhibit PhIP-induced prostate carcinogenesis in CYP1A-humanized mice.
    Chen JX; Li G; Wang H; Liu A; Lee MJ; Reuhl K; Suh N; Bosland MC; Yang CS
    Cancer Lett; 2016 Feb; 371(1):71-8. PubMed ID: 26582657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 1,25-dihydroxyvitamin D(3) and PI3K/AKT inhibitors synergistically inhibit growth and induce senescence in prostate cancer cells.
    Axanova LS; Chen YQ; McCoy T; Sui G; Cramer SD
    Prostate; 2010 Nov; 70(15):1658-71. PubMed ID: 20583132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Loss of MAOA in epithelia inhibits adenocarcinoma development, cell proliferation and cancer stem cells in prostate.
    Liao CP; Lin TP; Li PC; Geary LA; Chen K; Vaikari VP; Wu JB; Lin CH; Gross ME; Shih JC
    Oncogene; 2018 Sep; 37(38):5175-5190. PubMed ID: 29844571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PTEN deficiency is fully penetrant for prostate adenocarcinoma in C57BL/6 mice via mTOR-dependent growth.
    Blando J; Portis M; Benavides F; Alexander A; Mills G; Dave B; Conti CJ; Kim J; Walker CL
    Am J Pathol; 2009 May; 174(5):1869-79. PubMed ID: 19395652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-fat diet-induced hyperinsulinemia promotes the development of prostate adenocarcinoma in prostate-specific Pten-/- mice.
    Wang H; Yan W; Sun Y; Yang CS
    Carcinogenesis; 2022 Jun; 43(5):504-516. PubMed ID: 35104315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. KDM5B Is Essential for the Hyperactivation of PI3K/AKT Signaling in Prostate Tumorigenesis.
    Li G; Kanagasabai T; Lu W; Zou MR; Zhang SM; Celada SI; Izban MG; Liu Q; Lu T; Ballard BR; Zhou X; Adunyah SE; Matusik RJ; Yan Q; Chen Z
    Cancer Res; 2020 Nov; 80(21):4633-4643. PubMed ID: 32868382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PI3K/PTEN/AKT signaling regulates prostate tumor angiogenesis.
    Fang J; Ding M; Yang L; Liu LZ; Jiang BH
    Cell Signal; 2007 Dec; 19(12):2487-97. PubMed ID: 17826033
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FDPS cooperates with PTEN loss to promote prostate cancer progression through modulation of small GTPases/AKT axis.
    Seshacharyulu P; Rachagani S; Muniyan S; Siddiqui JA; Cruz E; Sharma S; Krishnan R; Killips BJ; Sheinin Y; Lele SM; Smith LM; Talmon GA; Ponnusamy MP; Datta K; Batra SK
    Oncogene; 2019 Jun; 38(26):5265-5280. PubMed ID: 30914801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cooperation between FGF8b overexpression and PTEN deficiency in prostate tumorigenesis.
    Zhong C; Saribekyan G; Liao CP; Cohen MB; Roy-Burman P
    Cancer Res; 2006 Feb; 66(4):2188-94. PubMed ID: 16489020
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Lu XX; Cao LY; Chen X; Xiao J; Zou Y; Chen Q
    Biomed Res Int; 2016; 2016():2476842. PubMed ID: 27822469
    [No Abstract]   [Full Text] [Related]  

  • 15. Activation of PI3K-Akt signaling pathway promotes prostate cancer cell invasion.
    Shukla S; Maclennan GT; Hartman DJ; Fu P; Resnick MI; Gupta S
    Int J Cancer; 2007 Oct; 121(7):1424-32. PubMed ID: 17551921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation of Akt signaling in prostate induces a TGFβ-mediated restraint on cancer progression and metastasis.
    Bjerke GA; Yang CS; Frierson HF; Paschal BM; Wotton D
    Oncogene; 2014 Jul; 33(28):3660-7. PubMed ID: 23995785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Apigenin inhibits prostate cancer progression in TRAMP mice via targeting PI3K/Akt/FoxO pathway.
    Shukla S; Bhaskaran N; Babcook MA; Fu P; Maclennan GT; Gupta S
    Carcinogenesis; 2014 Feb; 35(2):452-60. PubMed ID: 24067903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Loss of ATF3 promotes Akt activation and prostate cancer development in a Pten knockout mouse model.
    Wang Z; Xu D; Ding HF; Kim J; Zhang J; Hai T; Yan C
    Oncogene; 2015 Sep; 34(38):4975-84. PubMed ID: 25531328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The steroid receptor coactivator-3 is required for the development of castration-resistant prostate cancer.
    Tien JC; Liu Z; Liao L; Wang F; Xu Y; Wu YL; Zhou N; Ittmann M; Xu J
    Cancer Res; 2013 Jul; 73(13):3997-4008. PubMed ID: 23650284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential role of PTEN in transforming growth factor β (TGF-β) effects on proliferation and migration in prostate cancer cells.
    Kimbrough-Allah MN; Millena AC; Khan SA
    Prostate; 2018 Apr; 78(5):377-389. PubMed ID: 29341212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.